Comlekoglu T, Dzamba B, Pacheco G, Shook D, Sego T, Glazier J
Biol Open. 2024; 13(8).
PMID: 39162010
PMC: 11360141.
DOI: 10.1242/bio.060615.
Shook D, Wen J, Rolo A, OHanlon M, Francica B, Dobbins D
Elife. 2022; 11.
PMID: 35404236
PMC: 9064293.
DOI: 10.7554/eLife.57642.
Zhang M, Wilson S, Casey K, Thomson P, Zlatow A, Langlois V
Comp Med. 2021; 71(6):512-520.
PMID: 34794532
PMC: 8718621.
DOI: 10.30802/AALAS-CM-21-000061.
Brantley S, Di Talia S
Development. 2021; 148(13).
PMID: 34164654
PMC: 8255047.
DOI: 10.1242/dev.193128.
Shang N, Lee J, Huang T, Wang C, Lee T, C Mok S
Cell Tissue Res. 2020; 381(3):493-508.
PMID: 32607799
PMC: 7431403.
DOI: 10.1007/s00441-020-03237-2.
Convergent extension in the amphibian, Xenopus laevis.
Keller R, Sutherland A
Curr Top Dev Biol. 2020; 136:271-317.
PMID: 31959291
PMC: 7132997.
DOI: 10.1016/bs.ctdb.2019.11.013.
Developmental regulation of Wnt signaling by Nagk and the UDP-GlcNAc salvage pathway.
Neitzel L, Spencer Z, Nayak A, Cselenyi C, Benchabane H, Youngblood C
Mech Dev. 2019; 156:20-31.
PMID: 30904594
PMC: 6574174.
DOI: 10.1016/j.mod.2019.03.002.
Neural crest development in Xenopus requires Protocadherin 7 at the lateral neural crest border.
Bradley R
Mech Dev. 2018; 149:41-52.
PMID: 29366801
PMC: 5820198.
DOI: 10.1016/j.mod.2018.01.002.
Xenopus laevis as a model system to study cytoskeletal dynamics during axon pathfinding.
Slater P, Hayrapetian L, Lowery L
Genesis. 2017; 55(1-2).
PMID: 28095612
PMC: 5276718.
DOI: 10.1002/dvg.22994.
Olfactory experiences dynamically regulate plasticity of dendritic spines in granule cells of Xenopus tadpoles in vivo.
Zhang L, Huang Y, Hu B
Sci Rep. 2016; 6:35009.
PMID: 27713557
PMC: 5054522.
DOI: 10.1038/srep35009.
Making muscle: Morphogenetic movements and molecular mechanisms of myogenesis in Xenopus laevis.
Sabillo A, Ramirez J, Domingo C
Semin Cell Dev Biol. 2016; 51:80-91.
PMID: 26853935
PMC: 4798873.
DOI: 10.1016/j.semcdb.2016.02.006.
The involvement of PCP proteins in radial cell intercalations during Xenopus embryonic development.
Ossipova O, Chu C, Fillatre J, Brott B, Itoh K, Sokol S
Dev Biol. 2015; 408(2):316-27.
PMID: 26079437
PMC: 4810801.
DOI: 10.1016/j.ydbio.2015.06.013.
In vivo investigation of cilia structure and function using Xenopus.
Brooks E, Wallingford J
Methods Cell Biol. 2015; 127:131-59.
PMID: 25837389
PMC: 4433029.
DOI: 10.1016/bs.mcb.2015.01.018.
GEF-H1 functions in apical constriction and cell intercalations and is essential for vertebrate neural tube closure.
Itoh K, Ossipova O, Sokol S
J Cell Sci. 2014; 127(Pt 11):2542-53.
PMID: 24681784
PMC: 4038946.
DOI: 10.1242/jcs.146811.
Chordin forms a self-organizing morphogen gradient in the extracellular space between ectoderm and mesoderm in the Xenopus embryo.
Plouhinec J, Zakin L, Moriyama Y, De Robertis E
Proc Natl Acad Sci U S A. 2013; 110(51):20372-9.
PMID: 24284174
PMC: 3870759.
DOI: 10.1073/pnas.1319745110.
A homolog of Subtilisin-like Proprotein Convertase 7 is essential to anterior neural development in Xenopus.
Senturker S, Thomas J, Mateshaytis J, Moos Jr M
PLoS One. 2012; 7(6):e39380.
PMID: 22761776
PMC: 3386266.
DOI: 10.1371/journal.pone.0039380.
Temporal and spatial patterning of axial myotome fibers in Xenopus laevis.
Krneta-Stankic V, Sabillo A, Domingo C
Dev Dyn. 2010; 239(4):1162-77.
PMID: 20235228
PMC: 3086394.
DOI: 10.1002/dvdy.22275.
Deadenylation of maternal mRNAs mediated by miR-427 in Xenopus laevis embryos.
Lund E, Liu M, Hartley R, Sheets M, Dahlberg J
RNA. 2009; 15(12):2351-63.
PMID: 19854872
PMC: 2779678.
DOI: 10.1261/rna.1882009.
Vertebrate endoderm development and organ formation.
Zorn A, Wells J
Annu Rev Cell Dev Biol. 2009; 25:221-51.
PMID: 19575677
PMC: 2861293.
DOI: 10.1146/annurev.cellbio.042308.113344.
Xenopus SMOC-1 Inhibits bone morphogenetic protein signaling downstream of receptor binding and is essential for postgastrulation development in Xenopus.
Thomas J, Canelos P, Luyten F, Moos Jr M
J Biol Chem. 2009; 284(28):18994-9005.
PMID: 19414592
PMC: 2707235.
DOI: 10.1074/jbc.M807759200.