» Articles » PMID: 18094043

Coordinated Vascular Endothelial Growth Factor Expression and Signaling During Skeletal Myogenic Differentiation

Overview
Journal Mol Biol Cell
Date 2007 Dec 21
PMID 18094043
Citations 63
Authors
Affiliations
Soon will be listed here.
Abstract

Angiogenesis is largely controlled by hypoxia-driven transcriptional up-regulation and secretion of vascular endothelial growth factor (VEGF) and its binding to the endothelial cell tyrosine receptor kinases, VEGFR1 and VEGFR2. Recent expression analysis suggests that VEGF is expressed in a cell-specific manner in normoxic adult tissue; however, the transcriptional regulation and role of VEGF in these tissues remains fundamentally unknown. In this report we demonstrate that VEGF is coordinately up-regulated during terminal skeletal muscle differentiation. We reveal that this regulation is mediated in part by MyoD homo- and hetero-dimeric transcriptional mechanisms. Serial deletions of the VEGF promoter elucidated a region containing three tandem CANNTG consensus MyoD sites serving as essential sites of direct interaction for MyoD-mediated up-regulation of VEGF transcription. VEGF-null embryonic stem (ES) cells exhibited reduced myogenic differentiation compared with wild-type ES cells, suggesting that VEGF may serve a role in skeletal muscle differentiation. We demonstrate that VEGFR1 and VEGFR2 are expressed at low levels in myogenic precursor cells and are robustly activated upon VEGF stimulation and that their expression is coordinately regulated during skeletal muscle differentiation. VEGF stimulation of differentiating C2C12 cells promoted myotube hypertrophy and increased myogenic differentiation, whereas addition of sFlt1, a VEGF inhibitor, resulted in myotube hypotrophy and inhibited myogenic differentiation. We further provide evidence indicating VEGF-mediated myogenic marker expression, mitogenic activity, migration, and prosurvival functions may contribute to increased myogenesis. These data suggest a novel mechanism whereby VEGF is coordinately regulated as part of the myogenic differentiation program and serves an autocrine function regulating skeletal myogenesis.

Citing Articles

FAPs orchestrate homeostasis of muscle physiology and pathophysiology.

Yin K, Zhang C, Deng Z, Wei X, Xiang T, Yang C FASEB J. 2024; 38(24):e70234.

PMID: 39676717 PMC: 11647758. DOI: 10.1096/fj.202400381R.


Muscle Atrophy and mRNA-miRNA Network Analysis of Vascular Endothelial Growth Factor (VEGF) in a Mouse Model of Denervation-Induced Disuse.

Oguri G, Ikegami R, Ugawa H, Katoh M, Obi S, Sakuma M Cureus. 2024; 16(9):e68974.

PMID: 39385898 PMC: 11462388. DOI: 10.7759/cureus.68974.


Macrophages as a Source and Target of GDF-15.

Silva-Bermudez L, Kluter H, Kzhyshkowska J Int J Mol Sci. 2024; 25(13).

PMID: 39000420 PMC: 11242731. DOI: 10.3390/ijms25137313.


Applications of Graphene Family Nanomaterials in Regenerative Medicine: Recent Advances, Challenges, and Future Perspectives.

Chen X, Zou M, Liu S, Cheng W, Guo W, Feng X Int J Nanomedicine. 2024; 19:5459-5478.

PMID: 38863648 PMC: 11166159. DOI: 10.2147/IJN.S464025.


Endothelial cell signature in muscle stem cells validated by VEGFA-FLT1-AKT1 axis promoting survival of muscle stem cell.

Verma M, Asakura Y, Wang X, Zhou K, Unverdi M, Kann A Elife. 2024; 13.

PMID: 38842166 PMC: 11216748. DOI: 10.7554/eLife.73592.


References
1.
Ferrara N, Gerber H, LeCouter J . The biology of VEGF and its receptors. Nat Med. 2003; 9(6):669-76. DOI: 10.1038/nm0603-669. View

2.
Onofri C, Theodoropoulou M, Losa M, Uhl E, Lange M, Arzt E . Localization of vascular endothelial growth factor (VEGF) receptors in normal and adenomatous pituitaries: detection of a non-endothelial function of VEGF in pituitary tumours. J Endocrinol. 2006; 191(1):249-61. DOI: 10.1677/joe.1.06992. View

3.
Christ B, Brand-Saberi B . Limb muscle development. Int J Dev Biol. 2002; 46(7):905-14. View

4.
Liu Y, Cox S, Morita T, Kourembanas S . Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5' enhancer. Circ Res. 1995; 77(3):638-43. DOI: 10.1161/01.res.77.3.638. View

5.
Forsythe J, Jiang B, Iyer N, Agani F, Leung S, Koos R . Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol. 1996; 16(9):4604-13. PMC: 231459. DOI: 10.1128/MCB.16.9.4604. View