» Articles » PMID: 18077433

Deletion of the Core-H Region in Mice Abolishes the Expression of Three Proximal Odorant Receptor Genes in Cis

Overview
Specialty Science
Date 2007 Dec 14
PMID 18077433
Citations 50
Authors
Affiliations
Soon will be listed here.
Abstract

We have previously reported that a 2.1-kb homology (H) sequence, conserved between mouse and human, regulates the odorant receptor (OR) gene MOR28 in transgenic mice. Here, we narrowed down the essential sequences of the H to a core of 124 bp by using a transient expression system in zebrafish embryos. Transgenic experiments in mice demonstrated that the core-H sequence is sufficient to endow expression of the MOR28 minigene. Deletion and mutation analyses of the core-H region revealed two homeodomain sequences to be essential for the H enhancer activity. Targeted deletion of the core-H abolished expression of three proximal OR genes, MOR28, MOR10, and MOR83, in cis, indicating the presence of another locus control region/enhancer in the downstream region, that regulates four distal OR genes in the same MOR28 cluster. In the heterozygous mice, the H(-) phenotype of the mutant allele was not rescued by the wild-type H(+) allele in trans.

Citing Articles

The influence of olfactory experience on the birthrates of olfactory sensory neurons with specific odorant receptor identities.

Rufenacht K, Asson A, Hossain K, Santoro S Genesis. 2024; 62(3):e23611.

PMID: 38888221 PMC: 11189617. DOI: 10.1002/dvg.23611.


Establishment and maintenance of random monoallelic expression.

Kanata E, Duffie R, Schulz E Development. 2024; 151(10).

PMID: 38813842 PMC: 11166465. DOI: 10.1242/dev.201741.


Simultaneous single-cell three-dimensional genome and gene expression profiling uncovers dynamic enhancer connectivity underlying olfactory receptor choice.

Wu H, Zhang J, Jian F, Chen J, Zheng Y, Tan L Nat Methods. 2024; 21(6):974-982.

PMID: 38622459 PMC: 11166570. DOI: 10.1038/s41592-024-02239-0.


Epigenetic programming of stochastic olfactory receptor choice.

Yusuf N, Monahan K Genesis. 2024; 62(2):e23593.

PMID: 38562011 PMC: 11003729. DOI: 10.1002/dvg.23593.


Transcriptional adaptation of olfactory sensory neurons to GPCR identity and activity.

Horgue L, Assens A, Fodoulian L, Marconi L, Tuberosa J, Haider A Nat Commun. 2022; 13(1):2929.

PMID: 35614043 PMC: 9132991. DOI: 10.1038/s41467-022-30511-4.


References
1.
Roppolo D, Vollery S, Kan C, Luscher C, Broillet M, Rodriguez I . Gene cluster lock after pheromone receptor gene choice. EMBO J. 2007; 26(14):3423-30. PMC: 1933412. DOI: 10.1038/sj.emboj.7601782. View

2.
Mombaerts P, Wang F, Dulac C, CHAO S, Nemes A, Mendelsohn M . Visualizing an olfactory sensory map. Cell. 1996; 87(4):675-86. DOI: 10.1016/s0092-8674(00)81387-2. View

3.
Eggan K, Baldwin K, Tackett M, Osborne J, Gogos J, Chess A . Mice cloned from olfactory sensory neurons. Nature. 2004; 428(6978):44-9. DOI: 10.1038/nature02375. View

4.
Buck L, Axel R . A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell. 1991; 65(1):175-87. DOI: 10.1016/0092-8674(91)90418-x. View

5.
Mori T, Sakai M, Matsuoka I, Kurihara K . Analysis of promoter activity of 5'-upstream regions of zebrafish olfactory receptor genes. Biol Pharm Bull. 2000; 23(2):165-73. DOI: 10.1248/bpb.23.165. View