Schissel C, Roberts-Mataric H, Garcia I, Kang H, Mowzoon-Mogharrabi R, Francis M
J Am Chem Soc. 2025; 147(8):6503-6513.
PMID: 39933167
PMC: 11869294.
DOI: 10.1021/jacs.4c14103.
Fricke R, Knudson I, Swenson C, Smaga S, Schepartz A
Nat Protoc. 2025; .
PMID: 39762443
DOI: 10.1038/s41596-024-01086-9.
Pigula M, Schultz P
Curr Opin Chem Biol. 2024; 83:102537.
PMID: 39366132
PMC: 11809236.
DOI: 10.1016/j.cbpa.2024.102537.
Dunkelmann D, Chin J
Chem Rev. 2024; 124(19):11008-11062.
PMID: 39235427
PMC: 11467909.
DOI: 10.1021/acs.chemrev.4c00243.
Jann C, Giofre S, Bhattacharjee R, Lemke E
Chem Rev. 2024; 124(18):10281-10362.
PMID: 39120726
PMC: 11441406.
DOI: 10.1021/acs.chemrev.3c00878.
A Translation-Independent Directed Evolution Strategy to Engineer Aminoacyl-tRNA Synthetases.
Soni C, Prywes N, Hall M, Nair M, Savage D, Schepartz A
ACS Cent Sci. 2024; 10(6):1211-1220.
PMID: 38947215
PMC: 11212135.
DOI: 10.1021/acscentsci.3c01557.
Development of orthogonal aminoacyl-tRNA synthetase mutant for incorporating a non-canonical amino acid.
Lee D, Kim J, Kim T, Choi J
AMB Express. 2024; 14(1):60.
PMID: 38782816
PMC: 11116331.
DOI: 10.1186/s13568-024-01706-3.
Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers.
Sigal M, Matsumoto S, Beattie A, Katoh T, Suga H
Chem Rev. 2024; 124(10):6444-6500.
PMID: 38688034
PMC: 11122139.
DOI: 10.1021/acs.chemrev.3c00894.
Aminobenzoic Acid Derivatives Obstruct Induced Fit in the Catalytic Center of the Ribosome.
Majumdar C, Walker J, Francis M, Schepartz A, Cate J
ACS Cent Sci. 2023; 9(6):1160-1169.
PMID: 37396857
PMC: 10311655.
DOI: 10.1021/acscentsci.3c00153.
Expanding the substrate scope of pyrrolysyl-transfer RNA synthetase enzymes to include non-α-amino acids in vitro and in vivo.
Fricke R, Swenson C, Roe L, Hamlish N, Shah B, Zhang Z
Nat Chem. 2023; 15(7):960-971.
PMID: 37264106
PMC: 10322718.
DOI: 10.1038/s41557-023-01224-y.
Genetically programmed cell-based synthesis of non-natural peptide and depsipeptide macrocycles.
Spinck M, Piedrafita C, Robertson W, Elliott T, Cervettini D, de la Torre D
Nat Chem. 2022; 15(1):61-69.
PMID: 36550233
PMC: 9836938.
DOI: 10.1038/s41557-022-01082-0.
β-Lactamases Evolve against Antibiotics by Acquiring Large Active-Site Electric Fields.
Ji Z, Boxer S
J Am Chem Soc. 2022; 144(48):22289-22294.
PMID: 36399691
PMC: 10075085.
DOI: 10.1021/jacs.2c10791.
Protein Electric Fields Enable Faster and Longer-Lasting Covalent Inhibition of β-Lactamases.
Ji Z, Kozuch J, Mathews I, Diercks C, Shamsudin Y, Schulz M
J Am Chem Soc. 2022; 144(45):20947-20954.
PMID: 36324090
PMC: 10066720.
DOI: 10.1021/jacs.2c09876.
Redirecting RiPP Biosynthetic Enzymes to Proteins and Backbone-Modified Substrates.
Walker J, Hamlish N, Tytla A, Brauer D, Francis M, Schepartz A
ACS Cent Sci. 2022; 8(4):473-482.
PMID: 35505866
PMC: 9052802.
DOI: 10.1021/acscentsci.1c01577.
Cell-Free Approach for Non-canonical Amino Acids Incorporation Into Polypeptides.
Cui Z, Johnston W, Alexandrov K
Front Bioeng Biotechnol. 2020; 8:1031.
PMID: 33117774
PMC: 7550873.
DOI: 10.3389/fbioe.2020.01031.
Translation of Diverse Aramid- and 1,3-Dicarbonyl-peptides by Wild Type Ribosomes .
Ad O, Hoffman K, Cairns A, Featherston A, Miller S, Soll D
ACS Cent Sci. 2019; 5(7):1289-1294.
PMID: 31403077
PMC: 6661870.
DOI: 10.1021/acscentsci.9b00460.
Engineered Aminoacyl-tRNA Synthetases with Improved Selectivity toward Noncanonical Amino Acids.
Kwok H, Vargas-Rodriguez O, Melnikov S, Soll D
ACS Chem Biol. 2019; 14(4):603-612.
PMID: 30933556
PMC: 6642615.
DOI: 10.1021/acschembio.9b00088.
Playing with the Molecules of Life.
Young D, Schultz P
ACS Chem Biol. 2018; 13(4):854-870.
PMID: 29345901
PMC: 6061972.
DOI: 10.1021/acschembio.7b00974.
Post-Translational Modifications of Protein Backbones: Unique Functions, Mechanisms, and Challenges.
Muller M
Biochemistry. 2017; 57(2):177-185.
PMID: 29064683
PMC: 5770884.
DOI: 10.1021/acs.biochem.7b00861.
Expanding and reprogramming the genetic code.
Chin J
Nature. 2017; 550(7674):53-60.
PMID: 28980641
DOI: 10.1038/nature24031.