» Articles » PMID: 18069126

Meta-analysis of Whole-genome Linkage Scans for Intracranial Aneurysm

Overview
Journal Neurosci Lett
Specialty Neurology
Date 2007 Dec 11
PMID 18069126
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Genetic predisposition likely plays an important role in the development of intracranial aneurysms. We carried out a genome search meta-analysis to identified loci associated with intracranial aneurysm. We identified previous whole-genome linkage analyses by searching PUBMED. Five studies reported by separate investigators where detailed data could be obtained were included in our analysis. We synthesized the available genome-wide scan data by using a heterogeneity-based genome search meta-analyses. We identified two linkage sites on chromosomes 3 and 17 which had P-values <0.01 for association with intracranial aneurysm. Our findings confirm the association of a locus on chromosome 17 and identify a new linkage site on chromosome 3 for intracranial aneurysm. The new locus contains a number of potential gene candidates including kininogen-1 precursor, fibroblast growth factor-12 and endothelin converting enzyme 2.

Citing Articles

Differentially Expressed Circular RNA Profile in an Intracranial Aneurysm Group Compared with a Healthy Control Group.

Ma Y, Zhang B, Zhang D, Wang S, Li M, Zhao J Dis Markers. 2021; 2021:8889569.

PMID: 33574968 PMC: 7864737. DOI: 10.1155/2021/8889569.


A Review of the Genetics of Intracranial Berry Aneurysms and Implications for Genetic Counseling.

Hitchcock E, Gibson W J Genet Couns. 2016; 26(1):21-31.

PMID: 27743245 PMC: 5258806. DOI: 10.1007/s10897-016-0029-8.


Factors affecting formation and rupture of intracranial saccular aneurysms.

Bacigaluppi S, Piccinelli M, Antiga L, Veneziani A, Passerini T, Rampini P Neurosurg Rev. 2013; 37(1):1-14.

PMID: 24306170 DOI: 10.1007/s10143-013-0501-y.


The expression of SPARC in human intracranial aneurysms and its relationship with MMP-2/-9.

Li B, Li F, Chi L, Zhang L, Zhu S PLoS One. 2013; 8(3):e58490.

PMID: 23516489 PMC: 3597740. DOI: 10.1371/journal.pone.0058490.


The development and the use of experimental animal models to study the underlying mechanisms of CA formation.

Aoki T, Nishimura M J Biomed Biotechnol. 2011; 2011:535921.

PMID: 21253583 PMC: 3018658. DOI: 10.1155/2011/535921.


References
1.
Kaschina E, Stoll M, Sommerfeld M, Steckelings U, Kreutz R, Unger T . Genetic kininogen deficiency contributes to aortic aneurysm formation but not to atherosclerosis. Physiol Genomics. 2004; 19(1):41-9. DOI: 10.1152/physiolgenomics.00035.2004. View

2.
Yamada S, Utsunomiya M, Inoue K, Nozaki K, Inoue S, Takenaka K . Genome-wide scan for Japanese familial intracranial aneurysms: linkage to several chromosomal regions. Circulation. 2004; 110(24):3727-33. DOI: 10.1161/01.CIR.0000143077.23367.18. View

3.
Inoue K, Mineharu Y, Inoue S, Yamada S, Matsuda F, Nozaki K . Search on chromosome 17 centromere reveals TNFRSF13B as a susceptibility gene for intracranial aneurysm: a preliminary study. Circulation. 2006; 113(16):2002-10. DOI: 10.1161/CIRCULATIONAHA.105.579326. View

4.
Onda H, Kasuya H, Yoneyama T, Takakura K, Hori T, Takeda J . Genomewide-linkage and haplotype-association studies map intracranial aneurysm to chromosome 7q11. Am J Hum Genet. 2001; 69(4):804-19. PMC: 1226066. DOI: 10.1086/323614. View

5.
Zintzaras E, Ioannidis J . HEGESMA: genome search meta-analysis and heterogeneity testing. Bioinformatics. 2005; 21(18):3672-3. DOI: 10.1093/bioinformatics/bti536. View