» Articles » PMID: 18064590

Heritability of "small-world" Networks in the Brain: a Graph Theoretical Analysis of Resting-state EEG Functional Connectivity

Overview
Journal Hum Brain Mapp
Publisher Wiley
Specialty Neurology
Date 2007 Dec 8
PMID 18064590
Citations 103
Authors
Affiliations
Soon will be listed here.
Abstract

Recent studies have shown that resting-state functional networks as studied with fMRI, EEG, and MEG may be so-called small-world networks. We investigated to what extent the characteristic features of small-world networks are genetically determined. To represent functional connectivity between brain areas, we measured resting EEG in 574 twins and their siblings and calculated the synchronization likelihood between each pair of electrodes. We applied a threshold to obtain a binary graph from which we calculated the clustering coefficient C (describing local interconnectedness) and average path length L (describing global interconnectedness) for each individual. Modeling of MZ and DZ twin and sibling resemblance indicated that across various frequency bands 46-89% of the individual differences in C and 37-62% of the individual differences in L are heritable. It is asserted that C, L, and a small-world organization are viable markers of genetic differences in brain organization.

Citing Articles

Objective Detection of Newborn Infant Acute Procedural Pain Using EEG and Machine Learning Algorithms.

Roue J, Avnit A, Gholami B, Haddad W, Anand K Paediatr Neonatal Pain. 2025; 7(1):e70001.

PMID: 40066435 PMC: 11891568. DOI: 10.1002/pne2.70001.


Small-world networks propensity in spontaneous speech signals of Alzheimer's disease: visibility graph analysis.

Nasrolahzadeh M, Mohammadpoory Z, Haddadnia J Sci Rep. 2025; 15(1):4860.

PMID: 39924519 PMC: 11808076. DOI: 10.1038/s41598-025-88947-9.


Rapid dynamics of electrophysiological connectome states are heritable.

Jun S, Alderson T, Malone S, Harper J, Hunt R, Thomas K Netw Neurosci. 2024; 8(4):1065-1088.

PMID: 39735507 PMC: 11674403. DOI: 10.1162/netn_a_00391.


Hierarchical Trait-State Model for Decoding Dyadic Social Interactions.

Wu Q, Nakauchi S, Shehata M, Shimojo S ArXiv. 2024; .

PMID: 39606736 PMC: 11601788.


Neurogenetics of Brain Connectivity: Current Approaches to the Study (Review).

Proshina E, Deynekina T, Martynova O Sovrem Tekhnologii Med. 2024; 16(1):66-76.

PMID: 39421629 PMC: 11482091. DOI: 10.17691/stm2024.16.1.07.


References
1.
Deary I . Human intelligence differences: a recent history. Trends Cogn Sci. 2001; 5(3):127-130. DOI: 10.1016/s1364-6613(00)01621-1. View

2.
Bartolomei F, Bosma I, Klein M, Baayen J, Reijneveld J, Postma T . How do brain tumors alter functional connectivity? A magnetoencephalography study. Ann Neurol. 2005; 59(1):128-38. DOI: 10.1002/ana.20710. View

3.
Montez T, Linkenkaer-Hansen K, van Dijk B, Stam C . Synchronization likelihood with explicit time-frequency priors. Neuroimage. 2006; 33(4):1117-25. DOI: 10.1016/j.neuroimage.2006.06.066. View

4.
Micheloyannis S, Pachou E, Stam C, Breakspear M, Bitsios P, Vourkas M . Small-world networks and disturbed functional connectivity in schizophrenia. Schizophr Res. 2006; 87(1-3):60-6. DOI: 10.1016/j.schres.2006.06.028. View

5.
Bassett D, Meyer-Lindenberg A, Achard S, Duke T, Bullmore E . Adaptive reconfiguration of fractal small-world human brain functional networks. Proc Natl Acad Sci U S A. 2006; 103(51):19518-23. PMC: 1838565. DOI: 10.1073/pnas.0606005103. View