Hendrix J, Epperson L, Tong E, Chan Y, Hasan N, Dawrs S
PLoS One. 2023; 18(9):e0291072.
PMID: 37703253
PMC: 10499228.
DOI: 10.1371/journal.pone.0291072.
Lin Z, Wei J, Hu Y, Pi D, Jiang M, Lang T
Foods. 2023; 12(14).
PMID: 37509813
PMC: 10380055.
DOI: 10.3390/foods12142721.
He S, Qiao X, Zhang S, Xia J, Wang L, Liu S
Front Nutr. 2023; 9:1038806.
PMID: 36687674
PMC: 9846643.
DOI: 10.3389/fnut.2022.1038806.
Vega F, Emche S, Shao J, Simpkins A, Summers R, Mock M
Front Microbiol. 2021; 12:644768.
PMID: 33889142
PMC: 8055839.
DOI: 10.3389/fmicb.2021.644768.
Horne J, Beddingfield E, Knapp M, Mitchell S, Crawford L, Mills S
ACS Omega. 2020; 5(50):32250-32255.
PMID: 33376862
PMC: 7758883.
DOI: 10.1021/acsomega.0c03909.
Metabolite and Transcriptome Profiling on Xanthine Alkaloids-Fed Tea Plant () Shoot Tips and Roots Reveal the Complex Metabolic Network for Caffeine Biosynthesis and Degradation.
Deng C, Ku X, Cheng L, Pan S, Fan L, Deng W
Front Plant Sci. 2020; 11:551288.
PMID: 33013969
PMC: 7509060.
DOI: 10.3389/fpls.2020.551288.
Draft Genome Sequence of sp. Strain CES, Containing the Entire Alkylxanthine Gene Cluster for Caffeine Breakdown.
Summers R, Shao J, Mock M, Yu C, Vega F
Microbiol Resour Announc. 2020; 9(28).
PMID: 32646901
PMC: 7348019.
DOI: 10.1128/MRA.00484-20.
Quantifying the Importance of the Rare Biosphere for Microbial Community Response to Organic Pollutants in a Freshwater Ecosystem.
Wang Y, Hatt J, Tsementzi D, Rodriguez-R L, Ruiz-Perez C, Weigand M
Appl Environ Microbiol. 2017; 83(8).
PMID: 28258138
PMC: 5377499.
DOI: 10.1128/AEM.03321-16.
Discovery of piperonal-converting oxidase involved in the metabolism of a botanical aromatic aldehyde.
Doi S, Hashimoto Y, Tomita C, Kumano T, Kobayashi M
Sci Rep. 2016; 6:38021.
PMID: 27905507
PMC: 5131310.
DOI: 10.1038/srep38021.
Direct conversion of theophylline to 3-methylxanthine by metabolically engineered E. coli.
Algharrawi K, Summers R, Gopishetty S, Subramanian M
Microb Cell Fact. 2015; 14:203.
PMID: 26691652
PMC: 4687300.
DOI: 10.1186/s12934-015-0395-1.
Genetic characterization of caffeine degradation by bacteria and its potential applications.
Summers R, Mohanty S, Gopishetty S, Subramanian M
Microb Biotechnol. 2015; 8(3):369-78.
PMID: 25678373
PMC: 4408171.
DOI: 10.1111/1751-7915.12262.
Shifting the metallocentric molybdoenzyme paradigm: the importance of pyranopterin coordination.
Rothery R, Weiner J
J Biol Inorg Chem. 2014; 20(2):349-72.
PMID: 25267303
DOI: 10.1007/s00775-014-1194-6.
Biochemical analysis of recombinant AlkJ from Pseudomonas putida reveals a membrane-associated, flavin adenine dinucleotide-dependent dehydrogenase suitable for the biosynthetic production of aliphatic aldehydes.
Kirmair L, Skerra A
Appl Environ Microbiol. 2014; 80(8):2468-77.
PMID: 24509930
PMC: 3993173.
DOI: 10.1128/AEM.04297-13.
Delineation of the caffeine C-8 oxidation pathway in Pseudomonas sp. strain CBB1 via characterization of a new trimethyluric acid monooxygenase and genes involved in trimethyluric acid metabolism.
Mohanty S, Yu C, Das S, Louie T, Gakhar L, Subramanian M
J Bacteriol. 2012; 194(15):3872-82.
PMID: 22609920
PMC: 3416557.
DOI: 10.1128/JB.00597-12.
Two distinct pathways for metabolism of theophylline and caffeine are coexpressed in Pseudomonas putida CBB5.
Yu C, Louie T, Summers R, Kale Y, Gopishetty S, Subramanian M
J Bacteriol. 2009; 191(14):4624-32.
PMID: 19447909
PMC: 2704713.
DOI: 10.1128/JB.00409-09.