Fractional-order Anisotropic Diffusion for Image Denoising
Overview
Authors
Affiliations
This paper introduces a new class of fractional-order anisotropic diffusion equations for noise removal. These equations are Euler-Lagrange equations of a cost functional which is an increasing function of the absolute value of the fractional derivative of the image intensity function, so the proposed equations can be seen as generalizations of second-order and fourth-order anisotropic diffusion equations. We use the discrete Fourier transform to implement the numerical algorithm and give an iterative scheme in the frequency domain. It is one important aspect of the algorithm that it considers the input image as a periodic image. To overcome this problem, we use a folded algorithm by extending the image symmetrically about its borders. Finally, we list various numerical results on denoising real images. Experiments show that the proposed fractional-order anisotropic diffusion equations yield good visual effects and better signal-to-noise ratio.
Kim R, Abisado M, Villaverde J, Sampedro G Sensors (Basel). 2023; 23(15).
PMID: 37571604 PMC: 10422627. DOI: 10.3390/s23156821.
Real-time denoising of ultrasound images based on deep learning.
Cammarasana S, Nicolardi P, Patane G Med Biol Eng Comput. 2022; 60(8):2229-2244.
PMID: 35672630 PMC: 9293842. DOI: 10.1007/s11517-022-02573-5.
All-at-once multigrid approaches for one-dimensional space-fractional diffusion equations.
Donatelli M, Krause R, Mazza M, Trotti K Calcolo. 2021; 58(4):45.
PMID: 34803177 PMC: 8591672. DOI: 10.1007/s10092-021-00436-3.
On the image inpainting problem from the viewpoint of a nonlocal Cahn-Hilliard type equation.
Lovro Brkic A, Mitrovic D, Novak A J Adv Res. 2020; 25:67-76.
PMID: 32922975 PMC: 7474195. DOI: 10.1016/j.jare.2020.04.015.
Phase asymmetry ultrasound despeckling with fractional anisotropic diffusion and total variation.
Mei K, Hu B, Fei B, Qin B IEEE Trans Image Process. 2019; .
PMID: 31751240 PMC: 7370834. DOI: 10.1109/TIP.2019.2953361.