» Articles » PMID: 17901249

Highly Penetrant Myeloproliferative Disease in the Ts65Dn Mouse Model of Down Syndrome

Overview
Journal Blood
Publisher Elsevier
Specialty Hematology
Date 2007 Sep 29
PMID 17901249
Citations 63
Authors
Affiliations
Soon will be listed here.
Abstract

Children with Down syndrome (DS) display macrocytosis, thrombocytosis, and a 500-fold increased risk of developing megakaryocytic leukemia; however, the specific effects of trisomy 21 on hematopoiesis remain poorly defined. To study this question, we analyzed blood cell development in the Ts65Dn mouse model of DS. Ts65Dn mice are trisomic for 104 orthologs of Hsa21 genes and are the most widely used mouse model for DS. We discovered that Ts65Dn mice display persistent macrocytosis and develop a myeloproliferative disease (MPD) characterized by profound thrombocytosis, megakaryocyte hyperplasia, dysplastic megakaryocyte morphology, and myelofibrosis. In addition, these animals bear distorted hematopoietic stem and myeloid progenitor cell compartments compared with euploid control littermates. Of the 104 trisomic genes in Ts65Dn mice, Aml1/Runx1 attracts considerable attention as a candidate oncogene in DS-acute megakaryoblastic leukemia (DS-AMKL). To determine whether trisomy for Aml1/Runx1 is essential for MPD, we restored disomy at the Aml1/Runx1 locus in the Ts65Dn strain. Surprisingly, trisomy for Aml1/Runx1 is not required for megakaryocyte hyperplasia and myelofibrosis, suggesting that trisomy for one or more of the remaining genes can promote this disease. Our studies demonstrate the potential of DS mouse models to improve our understanding of chromosome 21 gene dosage effects in human hematologic malignancies.

Citing Articles

Down syndrome-associated leukaemias: current evidence and challenges.

Mason N, Cahill H, Diamond Y, McCleary K, Kotecha R, Marshall G Ther Adv Hematol. 2024; 15:20406207241257901.

PMID: 39050114 PMC: 11268035. DOI: 10.1177/20406207241257901.


Breathing and Oxygen Carrying Capacity in Ts65Dn and Down Syndrome.

DeRuisseau L, Receno C, Cunningham C, Bates M, Goodell M, Liang C Function (Oxf). 2023; 4(6):zqad058.

PMID: 37954975 PMC: 10634617. DOI: 10.1093/function/zqad058.


Synergistic roles of DYRK1A and GATA1 in trisomy 21 megakaryopoiesis.

Sit Y, Takasaki K, An H, Xiao Y, Hurtz C, Gearhart P JCI Insight. 2023; 8(23).

PMID: 37906251 PMC: 10895998. DOI: 10.1172/jci.insight.172851.


RUN(X) out of blood: emerging RUNX1 functions beyond hematopoiesis and links to Down syndrome.

Rozen E, Ozeroff C, Allen M Hum Genomics. 2023; 17(1):83.

PMID: 37670378 PMC: 10481493. DOI: 10.1186/s40246-023-00531-2.


Dissection of a Down syndrome-associated trisomy to separate the gene dosage-dependent and -independent effects of an extra chromosome.

Xing Z, Li Y, Cortes-Gomez E, Jiang X, Gao S, Pao A Hum Mol Genet. 2023; 32(13):2205-2218.

PMID: 37014740 PMC: 10281752. DOI: 10.1093/hmg/ddad056.


References
1.
Baxter E, Scott L, Campbell P, East C, Fourouclas N, Swanton S . Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005; 365(9464):1054-61. DOI: 10.1016/S0140-6736(05)71142-9. View

2.
James C, Ugo V, Le Couedic J, Staerk J, Delhommeau F, Lacout C . A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005; 434(7037):1144-8. DOI: 10.1038/nature03546. View

3.
Li Z, Godinho F, Klusmann J, Garriga-Canut M, Yu C, Orkin S . Developmental stage-selective effect of somatically mutated leukemogenic transcription factor GATA1. Nat Genet. 2005; 37(6):613-9. DOI: 10.1038/ng1566. View

4.
Richtsmeier J, Baxter L, Reeves R . Parallels of craniofacial maldevelopment in Down syndrome and Ts65Dn mice. Dev Dyn. 2000; 217(2):137-45. DOI: 10.1002/(SICI)1097-0177(200002)217:2<137::AID-DVDY1>3.0.CO;2-N. View

5.
Rainis L, Toki T, Pimanda J, Rosenthal E, Machol K, Strehl S . The proto-oncogene ERG in megakaryoblastic leukemias. Cancer Res. 2005; 65(17):7596-602. DOI: 10.1158/0008-5472.CAN-05-0147. View