» Articles » PMID: 17898381

The Effects of General Anesthesia on Human Skin Microcirculation Evaluated by Wavelet Transform

Overview
Journal Anesth Analg
Specialty Anesthesiology
Date 2007 Sep 28
PMID 17898381
Citations 29
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Time-frequency analysis of the laser Doppler flowmetry signal, using wavelet transform, shows periodic oscillations at five characteristic frequencies related to the heart (0.6-2 Hz), respiration (0.15-0.6 Hz), myogenic activity in the vessel wall (0.052-0.15 Hz), sympathetic activity (0.021-0.052 Hz), and very slow oscillations (0.0095-0.021), which can be modulated by the endothelium-dependent vasodilator acetylcholine. We hypothesized that wavelet transform of laser Doppler flowmetry signals could detect changes in the microcirculation induced by general anesthesia, such as alterations in vasomotion and sympathetic activity.

Methods: Eleven patients undergoing faciomaxillary surgery were included. Skin microcirculation was measured on the lower forearm with laser Doppler flowmetry and iontophoresis with acetylcholine and sodium nitroprusside before and during general anesthesia with propofol, fentanyl, and midazolam. The laser Doppler flowmetry signals were analyzed using wavelet transform.

Results: There were significant reductions in spectral amplitudes in the 0.0095-0.021 (P < 0.01), the 0.021-0.052 (P < 0.001), and the 0.052-0.15 Hz frequency interval (P < 0.01) and a significant increase in the 0.15-0.6 Hz frequency interval. General anesthesia had no effect on the difference between acetylcholine and sodium nitroprusside on relative amplitudes in the 0.0095-0.021 Hz frequency interval (P < 0.001).

Conclusion: General anesthesia reduces the oscillatory components of the perfusion signal related to sympathetic, myogenic activity and the component modulated by the endothelium. However, the iontophoretic data did not reveal a specific effect on the endothelium. The increase in the 0.15-0.6 Hz interval is related to the effect of mechanical ventilation.

Citing Articles

Neurovascular phase coherence is altered in Alzheimer's disease.

Bjerkan J, Meglic B, Lancaster G, Kobal J, McClintock P, Crawford T Brain Commun. 2025; 7(1):fcaf007.

PMID: 40008330 PMC: 11852277. DOI: 10.1093/braincomms/fcaf007.


The phase coherence of the neurovascular unit is reduced in Huntington's disease.

Bjerkan J, Kobal J, Lancaster G, Sesok S, Meglic B, McClintock P Brain Commun. 2024; 6(3):fcae166.

PMID: 38938620 PMC: 11210076. DOI: 10.1093/braincomms/fcae166.


Extravascular injection of neuromuscular blocking drugs: A systematic review of current evidence and management.

Nietvelt F, Van Herreweghe I, Godschalx V, Soetens F Eur J Anaesthesiol. 2024; 41(5):367-373.

PMID: 38410855 PMC: 10990036. DOI: 10.1097/EJA.0000000000001967.


Assessment of power spectral density of microvascular hemodynamics in skeletal muscles at very low and low-frequency via near-infrared diffuse optical spectroscopies.

Amendola C, Buttafava M, Carteano T, Contini L, Cortese L, Durduran T Biomed Opt Express. 2023; 14(11):5994-6015.

PMID: 38021143 PMC: 10659778. DOI: 10.1364/BOE.502618.


Wavelet analysis of laser Doppler microcirculatory signals: Current applications and limitations.

Kralj L, Lenasi H Front Physiol. 2023; 13:1076445.

PMID: 36741808 PMC: 9895103. DOI: 10.3389/fphys.2022.1076445.