Karaaslan E, Sorvillo T, Scholte F, ONeal T, Welch S, Davies K
NPJ Vaccines. 2024; 9(1):148.
PMID: 39143104
PMC: 11324950.
DOI: 10.1038/s41541-024-00931-y.
Pahmeier F, Monticelli S, Feng X, Hjorth C, Wang A, Kuehne A
bioRxiv. 2024; .
PMID: 38826290
PMC: 11142176.
DOI: 10.1101/2024.05.23.595578.
Hawman D, Leventhal S, Meade-White K, Khandhar A, Murray J, Lovaglio J
NPJ Vaccines. 2024; 9(1):86.
PMID: 38769294
PMC: 11106275.
DOI: 10.1038/s41541-024-00887-z.
Scholte F, Spengler J, Welch S, Harmon J, Coleman-McCray J, Davies K
Virus Res. 2024; 345:199398.
PMID: 38754786
PMC: 11137588.
DOI: 10.1016/j.virusres.2024.199398.
Wang Q, Wang S, Shi Z, Li Z, Zhao Y, Feng N
Front Cell Infect Microbiol. 2024; 14:1341332.
PMID: 38746783
PMC: 11091404.
DOI: 10.3389/fcimb.2024.1341332.
A mRNA Vaccine for Crimean-Congo Hemorrhagic Fever Virus Expressing Non-Fusion GnGc Using NSm Linker Elicits Unexpected Immune Responses in Mice.
Chen T, Ding Z, Li X, Li Y, Lan J, Wong G
Viruses. 2024; 16(3).
PMID: 38543744
PMC: 10975845.
DOI: 10.3390/v16030378.
Nucleocapsid protein-specific monoclonal antibodies protect mice against Crimean-Congo hemorrhagic fever virus.
Garrison A, Moresco V, Zeng X, Cline C, Ward M, Ricks K
Nat Commun. 2024; 15(1):1722.
PMID: 38409240
PMC: 10897337.
DOI: 10.1038/s41467-024-46110-4.
Nairovirus polymerase mutations associated with the establishment of persistent infection in human cells.
Ohta K, Saka N, Nishi Y, Nishio M
J Virol. 2024; 98(3):e0169823.
PMID: 38358288
PMC: 10949423.
DOI: 10.1128/jvi.01698-23.
LDLR is an entry receptor for Crimean-Congo hemorrhagic fever virus.
Xu Z, Du W, Wang S, Wang M, Yang Y, Li Y
Cell Res. 2024; 34(2):140-150.
PMID: 38182887
PMC: 10837205.
DOI: 10.1038/s41422-023-00917-w.
Interactome profiling of Crimean-Congo hemorrhagic fever virus glycoproteins.
Dai S, Min Y, Li Q, Feng K, Jiang Z, Wang Z
Nat Commun. 2023; 14(1):7365.
PMID: 37963884
PMC: 10646030.
DOI: 10.1038/s41467-023-43206-1.
Site-1 protease inhibits mitochondrial respiration by controlling the TGF-β target gene Mss51.
Mousa M, Vuppaladhadiam L, Kelly M, Pietka T, Ek S, Shen K
Cell Rep. 2023; 42(4):112336.
PMID: 37002920
PMC: 10544680.
DOI: 10.1016/j.celrep.2023.112336.
The proprotein convertase SKI-1/S1P is a critical host factor for Nairobi sheep disease virus infectivity.
Bost C, Hartlaub J, Pinho Dos Reis V, Strecker T, Seidah N, Groschup M
Virus Res. 2023; 329:199099.
PMID: 36948228
PMC: 10194167.
DOI: 10.1016/j.virusres.2023.199099.
Structural characterization of protective non-neutralizing antibodies targeting Crimean-Congo hemorrhagic fever virus.
Durie I, Tehrani Z, Karaaslan E, Sorvillo T, McGuire J, Golden J
Nat Commun. 2022; 13(1):7298.
PMID: 36435827
PMC: 9701186.
DOI: 10.1038/s41467-022-34923-0.
GEM-PA-Based Subunit Vaccines of Crimean Congo Hemorrhagic Fever Induces Systemic Immune Responses in Mice.
Wang Q, Wang S, Shi Z, Li Z, Zhao Y, Feng N
Viruses. 2022; 14(8).
PMID: 36016285
PMC: 9416392.
DOI: 10.3390/v14081664.
Development of Multi-epitope Based Subunit Vaccine Against Crimean-Congo Hemorrhagic Fever Virus Using Reverse Vaccinology Approach.
Imran M, Islam M, Saha A, Ferdousee S, Mishu M, Ghosh A
Int J Pept Res Ther. 2022; 28(4):124.
PMID: 35789799
PMC: 9244561.
DOI: 10.1007/s10989-022-10430-0.
Cryo-EM structure of glycoprotein C from Crimean-Congo hemorrhagic fever virus.
Li N, Rao G, Li Z, Yin J, Chong T, Tian K
Virol Sin. 2022; 37(1):127-137.
PMID: 35234630
PMC: 8922431.
DOI: 10.1016/j.virs.2022.01.015.
Immunobiology of Crimean-Congo hemorrhagic fever.
Rodriguez S, Hawman D, Sorvillo T, ONeal T, Bird B, Rodriguez L
Antiviral Res. 2022; 199:105244.
PMID: 35026307
PMC: 9245446.
DOI: 10.1016/j.antiviral.2022.105244.
Structural basis of synergistic neutralization of Crimean-Congo hemorrhagic fever virus by human antibodies.
Mishra A, Hellert J, Freitas N, Guardado-Calvo P, Haouz A, Fels J
Science. 2021; 375(6576):104-109.
PMID: 34793197
PMC: 9771711.
DOI: 10.1126/science.abl6502.
Development of a Novel Multi-Epitope Vaccine Against Crimean-Congo Hemorrhagic Fever Virus: An Integrated Reverse Vaccinology, Vaccine Informatics and Biophysics Approach.
Tahir Ul Qamar M, Ismail S, Ahmad S, Mirza M, Abbasi S, Ashfaq U
Front Immunol. 2021; 12:669812.
PMID: 34220816
PMC: 8242340.
DOI: 10.3389/fimmu.2021.669812.
How Do Enveloped Viruses Exploit the Secretory Proprotein Convertases to Regulate Infectivity and Spread?.
Seidah N, Pasquato A, Andreo U
Viruses. 2021; 13(7).
PMID: 34202098
PMC: 8310232.
DOI: 10.3390/v13071229.