» Articles » PMID: 17869248

Extensive Mutagenesis Experiments Corroborate a Structural Model for the DNA Deaminase Domain of APOBEC3G

Overview
Journal FEBS Lett
Specialty Biochemistry
Date 2007 Sep 18
PMID 17869248
Citations 40
Authors
Affiliations
Soon will be listed here.
Abstract

APOBEC3G is a single-strand DNA cytosine deaminase capable of blocking retrovirus and retrotransposon replication. APOBEC3G has two conserved zinc-coordinating motifs but only one is required for catalysis. Here, deletion analyses revealed that the minimal catalytic domain consists of residues 198-384. Size exclusion assays indicated that this protein is monomeric. Many (31/69) alanine substitution derivatives of APOBEC3G198-384 retained significant to full levels of activity. These data corroborated an APOBEC2-based structural model for the catalytic domain of APOBEC3G indicating that most non-essential residues are solvent accessible and most essential residues cluster within the protein core.

Citing Articles

Interactions of APOBEC3s with DNA and RNA.

Maiti A, Hou S, Schiffer C, Matsuo H Curr Opin Struct Biol. 2021; 67:195-204.

PMID: 33486429 PMC: 8096667. DOI: 10.1016/j.sbi.2020.12.004.


Mitochondrial DNA Repair in an Uracil N-Glycosylase Mutant.

Wynn E, Purfeerst E, Christensen A Plants (Basel). 2020; 9(2).

PMID: 32085412 PMC: 7076443. DOI: 10.3390/plants9020261.


Insights into DNA substrate selection by APOBEC3G from structural, biochemical, and functional studies.

Ziegler S, Liu C, Landau M, Buzovetsky O, Desimmie B, Zhao Q PLoS One. 2018; 13(3):e0195048.

PMID: 29596531 PMC: 5875850. DOI: 10.1371/journal.pone.0195048.


Structural and functional assessment of APOBEC3G macromolecular complexes.

Polevoda B, McDougall W, Bennett R, Salter J, Smith H Methods. 2016; 107:10-22.

PMID: 26988126 PMC: 5014647. DOI: 10.1016/j.ymeth.2016.03.006.


Zinc enhancement of cytidine deaminase activity highlights a potential allosteric role of loop-3 in regulating APOBEC3 enzymes.

Marx A, Galilee M, Alian A Sci Rep. 2015; 5:18191.

PMID: 26678087 PMC: 4683357. DOI: 10.1038/srep18191.


References
1.
Combet C, Blanchet C, Geourjon C, Deleage G . NPS@: network protein sequence analysis. Trends Biochem Sci. 2000; 25(3):147-50. DOI: 10.1016/s0968-0004(99)01540-6. View

2.
Janini M, Rogers M, Birx D, McCutchan F . Human immunodeficiency virus type 1 DNA sequences genetically damaged by hypermutation are often abundant in patient peripheral blood mononuclear cells and may be generated during near-simultaneous infection and activation of CD4(+) T cells. J Virol. 2001; 75(17):7973-86. PMC: 115041. DOI: 10.1128/jvi.75.17.7973-7986.2001. View

3.
Harris R, Bishop K, Sheehy A, Craig H, Petersen-Mahrt S, Watt I . DNA deamination mediates innate immunity to retroviral infection. Cell. 2003; 113(6):803-9. DOI: 10.1016/s0092-8674(03)00423-9. View

4.
Zhang H, Yang B, Pomerantz R, Zhang C, Arunachalam S, Gao L . The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature. 2003; 424(6944):94-8. PMC: 1350966. DOI: 10.1038/nature01707. View

5.
Mangeat B, Turelli P, Caron G, Friedli M, Perrin L, Trono D . Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature. 2003; 424(6944):99-103. DOI: 10.1038/nature01709. View