» Articles » PMID: 17851774

Development of an in Planta Method for Transformation of Alfalfa (Medicago Sativa)

Overview
Journal Transgenic Res
Specialty Molecular Biology
Date 2007 Sep 14
PMID 17851774
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

Conventional methods in transforming alfalfa (Medicago sativa) require multiple tissue culture manipulations that are time-consuming and expensive, while applicable only to a few highly regenerable genotypes. Here, we describe a simple in planta method that makes it possible to transform a commercial variety without employing selectable marker genes. Basically, young seedlings are cut at the apical node, cold-treated, and vigorously vortexed in an Agrobacterium suspension also containing sand. About 7% of treated seedlings produced progenies segregating for the T-DNA. The vortex-mediated seedling transformation method was applied to transform alfalfa with an all-native transfer DNA comprising a silencing construct for the caffeic acid o-methyltransferase (Comt) gene. Resulting intragenic plants accumulated reduced levels of the indigestible fiber component lignin that lowers forage quality. The absence of both selectable marker genes and other foreign genetic elements may expedite the governmental approval process for quality-enhanced alfalfa.

Citing Articles

Improved Protocol for Efficient -Mediated Transient Gene Expression in L.

Basak S, Parajulee D, Dhir S, Sangra A, Dhir S Plants (Basel). 2024; 13(21).

PMID: 39519910 PMC: 11547841. DOI: 10.3390/plants13212992.


A comprehensive review of in planta stable transformation strategies.

Gelinas Belanger J, Copley T, Hoyos-Villegas V, Charron J, ODonoughue L Plant Methods. 2024; 20(1):79.

PMID: 38822403 PMC: 11140912. DOI: 10.1186/s13007-024-01200-8.


Cisgenics and intragenics: boon or bane for crop improvement.

Vasudevan S, Pooja S, Raju T, Damini C Front Plant Sci. 2023; 14:1275145.

PMID: 38089798 PMC: 10715053. DOI: 10.3389/fpls.2023.1275145.


Plant Promoters and Terminators for High-Precision Bioengineering.

Brooks E, Elorriaga E, Liu Y, Duduit J, Yuan G, Tsai C Biodes Res. 2023; 5:0013.

PMID: 37849460 PMC: 10328392. DOI: 10.34133/bdr.0013.


Genetic Improvement of Wheat for Drought Tolerance: Progress, Challenges and Opportunities.

Bapela T, Shimelis H, Tsilo T, Mathew I Plants (Basel). 2022; 11(10).

PMID: 35631756 PMC: 9144332. DOI: 10.3390/plants11101331.


References
1.
Bent A . Arabidopsis thaliana floral dip transformation method. Methods Mol Biol. 2006; 343:87-103. DOI: 10.1385/1-59745-130-4:87. View

2.
Guo D, Chen F, Wheeler J, Winder J, Selman S, Peterson M . Improvement of in-rumen digestibility of alfalfa forage by genetic manipulation of lignin O-methyltransferases. Transgenic Res. 2001; 10(5):457-64. DOI: 10.1023/a:1012278106147. View

3.
Konig A . A framework for designing transgenic crops--science, safety and citizen's concerns. Nat Biotechnol. 2003; 21(11):1274-9. DOI: 10.1038/nbt1103-1274. View

4.
Rommens C, van Haaren M, Buchel A, Mol J, van Tunen A, Nijkamp H . Transactivation of Ds by Ac-transposase gene fusions in tobacco. Mol Gen Genet. 1992; 231(3):433-41. DOI: 10.1007/BF00292713. View

5.
Strauss S . Genetic technologies. Genomics, genetic engineering, and domestication of crops. Science. 2003; 300(5616):61-2. DOI: 10.1126/science.1079514. View