Ouyang Y, Al-Amodi A, Tehseen M, Alhudhali L, Shirbini A, Takahashi M
Nucleic Acids Res. 2024; 52(15):8880-8896.
PMID: 38967018
PMC: 11347169.
DOI: 10.1093/nar/gkae565.
Schmit M, Baxley R, Wang L, Hinderlie P, Kaufman M, Simon E
Open Biol. 2024; 14(1):230407.
PMID: 38262603
PMC: 10805602.
DOI: 10.1098/rsob.230407.
Izumi M, Mizuno T, Yanagi K, Sugimura K, Okumura K, Imamoto N
J Biol Chem. 2017; 292(31):13008-13021.
PMID: 28646110
PMC: 5546039.
DOI: 10.1074/jbc.M117.779371.
Perez-Arnaiz P, Bruck I, Colbert M, Kaplan D
Nucleic Acids Res. 2017; 45(12):7261-7275.
PMID: 28510759
PMC: 5499591.
DOI: 10.1093/nar/gkx438.
Baxley R, Bielinsky A
Genes (Basel). 2017; 8(2).
PMID: 28218679
PMC: 5333062.
DOI: 10.3390/genes8020073.
Xenopus Mcm10 is a CDK-substrate required for replication fork stability.
Chadha G, Gambus A, Gillespie P, Blow J
Cell Cycle. 2016; 15(16):2183-2195.
PMID: 27327991
PMC: 4993430.
DOI: 10.1080/15384101.2016.1199305.
Mcm10 coordinates the timely assembly and activation of the replication fork helicase.
Perez-Arnaiz P, Bruck I, Kaplan D
Nucleic Acids Res. 2015; 44(1):315-29.
PMID: 26582917
PMC: 4705653.
DOI: 10.1093/nar/gkv1260.
The N-terminus of Mcm10 is important for interaction with the 9-1-1 clamp and in resistance to DNA damage.
Alver R, Zhang T, Josephrajan A, Fultz B, Hendrix C, Das-Bradoo S
Nucleic Acids Res. 2014; 42(13):8389-404.
PMID: 24972833
PMC: 4117747.
DOI: 10.1093/nar/gku479.
MCM10: one tool for all-Integrity, maintenance and damage control.
Thu Y, Bielinsky A
Semin Cell Dev Biol. 2014; 30:121-30.
PMID: 24662891
PMC: 4043890.
DOI: 10.1016/j.semcdb.2014.03.017.
Mcm10 self-association is mediated by an N-terminal coiled-coil domain.
Du W, Josephrajan A, Adhikary S, Bowles T, Bielinsky A, Eichman B
PLoS One. 2013; 8(7):e70518.
PMID: 23894664
PMC: 3720919.
DOI: 10.1371/journal.pone.0070518.
Archaeology of eukaryotic DNA replication.
Makarova K, Koonin E
Cold Spring Harb Perspect Biol. 2013; 5(11):a012963.
PMID: 23881942
PMC: 3809583.
DOI: 10.1101/cshperspect.a012963.
Human SIRT1 regulates DNA binding and stability of the Mcm10 DNA replication factor via deacetylation.
Fatoba S, Tognetti S, Berto M, Leo E, Mulvey C, Godovac-Zimmermann J
Nucleic Acids Res. 2013; 41(7):4065-79.
PMID: 23449222
PMC: 3627603.
DOI: 10.1093/nar/gkt131.
Enigmatic roles of Mcm10 in DNA replication.
Thu Y, Bielinsky A
Trends Biochem Sci. 2013; 38(4):184-94.
PMID: 23332289
PMC: 3608807.
DOI: 10.1016/j.tibs.2012.12.003.
Emerging players in the initiation of eukaryotic DNA replication.
Shen Z, Prasanth S
Cell Div. 2012; 7(1):22.
PMID: 23075259
PMC: 3520825.
DOI: 10.1186/1747-1028-7-22.
Structural biology of replication initiation factor Mcm10.
Du W, Stauffer M, Eichman B
Subcell Biochem. 2012; 62:197-216.
PMID: 22918587
PMC: 5023279.
DOI: 10.1007/978-94-007-4572-8_11.
CRL4-DDB1-VPRBP ubiquitin ligase mediates the stress triggered proteolysis of Mcm10.
Kaur M, Khan M, Kar A, Sharma A, Saxena S
Nucleic Acids Res. 2012; 40(15):7332-46.
PMID: 22570418
PMC: 3424545.
DOI: 10.1093/nar/gks366.
Mcm10 associates with the loaded DNA helicase at replication origins and defines a novel step in its activation.
van Deursen F, Sengupta S, Piccoli G, Sanchez-Diaz A, Labib K
EMBO J. 2012; 31(9):2195-206.
PMID: 22433841
PMC: 3343467.
DOI: 10.1038/emboj.2012.69.
Mcm10 plays an essential role in origin DNA unwinding after loading of the CMG components.
Kanke M, Kodama Y, Takahashi T, Nakagawa T, Masukata H
EMBO J. 2012; 31(9):2182-94.
PMID: 22433840
PMC: 3343466.
DOI: 10.1038/emboj.2012.68.
Mcm10 proteolysis initiates before the onset of M-phase.
Kaur M, Sharma A, Khan M, Kar A, Saxena S
BMC Cell Biol. 2010; 11:84.
PMID: 20979666
PMC: 2987893.
DOI: 10.1186/1471-2121-11-84.
Solution NMR structure of the C-terminal DNA binding domain of Mcm10 reveals a conserved MCM motif.
Robertson P, Chagot B, Chazin W, Eichman B
J Biol Chem. 2010; 285(30):22942-9.
PMID: 20489205
PMC: 2906287.
DOI: 10.1074/jbc.M110.131276.