» Articles » PMID: 1779709

Cloning and Disruption of the Yeast C-8 Sterol Isomerase Gene

Overview
Journal Lipids
Specialty Biochemistry
Date 1991 Aug 1
PMID 1779709
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

The yeast ERG2 gene codes for the C-8 sterol isomerase, an enzyme required for the isomerization of the delta 8 double bond to the delta 7 position in ergosterol biosynthesis. The ERG2 gene was cloned by complementation of a C-8 sterol isomerase mutant strain (erg2). The complementing region of DNA required to restore ergosterol synthesis to erg2 was limited to a 1.0 kb StuI-BglII fragment. In order to determine whether the ERG2 gene was essential for yeast viability, a LEU2 gene was inserted into the NdeI site (made blunt) of this 1.0 kb fragment. Transformation of a wild type diploid strain with the ERG2 substituted DNA resulted in the generation of viable haploids containing the erg2 null allele (erg2-4::Leu2). These results suggest that the C-8 sterol isomerase activity is not essential for yeast cell viability. This disruption represents the second ergosterol biosynthetic gene in the distal portion of the pathway to be disrupted without adversely affecting cell viability.

Citing Articles

Is Involved in Resistance to 7-Aminocholesterol and Secretion of Fungal Proteins in .

Smith-Peavler E, Patel R, Onumajuru A, Bowring B, Miller J, Brunel J Pathogens. 2022; 11(11).

PMID: 36364991 PMC: 9697666. DOI: 10.3390/pathogens11111239.


Symbiosis Drives Metabolomic and Transcriptomic Changes in Sclerotia.

Xing Y, Li B, Liu L, Li Y, Yin S, Yin S Front Microbiol. 2022; 12:792530.

PMID: 35185819 PMC: 8851056. DOI: 10.3389/fmicb.2021.792530.


Structural basis for human sterol isomerase in cholesterol biosynthesis and multidrug recognition.

Long T, Hassan A, Thompson B, McDonald J, Wang J, Li X Nat Commun. 2019; 10(1):2452.

PMID: 31165728 PMC: 6549186. DOI: 10.1038/s41467-019-10279-w.


The Mechanistic Targets of Antifungal Agents: An Overview.

Mazu T, Bricker B, Flores-Rozas H, Ablordeppey S Mini Rev Med Chem. 2016; 16(7):555-78.

PMID: 26776224 PMC: 5215921. DOI: 10.2174/1389557516666160118112103.


Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose.

Matsushika A, Goshima T, Hoshino T Microb Cell Fact. 2014; 13:16.

PMID: 24467867 PMC: 3917370. DOI: 10.1186/1475-2859-13-16.


References
1.
Rodriguez R, Low C, Bottema C, Parks L . Multiple functions for sterols in Saccharomyces cerevisiae. Biochim Biophys Acta. 1985; 837(3):336-43. DOI: 10.1016/0005-2760(85)90057-8. View

2.
Rose M, Novick P, Thomas J, Botstein D, Fink G . A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene. 1987; 60(2-3):237-43. DOI: 10.1016/0378-1119(87)90232-0. View

3.
Sikorski R, Hieter P . A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989; 122(1):19-27. PMC: 1203683. DOI: 10.1093/genetics/122.1.19. View

4.
Pinto W, NES W . Stereochemical specificity for sterols in Saccharomyces cerevisiae. J Biol Chem. 1983; 258(7):4472-6. View

5.
Dickson R, Wells G, Schmidt A, Lester R . Isolation of mutant Saccharomyces cerevisiae strains that survive without sphingolipids. Mol Cell Biol. 1990; 10(5):2176-81. PMC: 360565. DOI: 10.1128/mcb.10.5.2176-2181.1990. View