» Articles » PMID: 17765206

Glutamate Receptor Subunit Expression in the Rhesus Macaque Locus Coeruleus

Overview
Journal Brain Res
Specialty Neurology
Date 2007 Sep 4
PMID 17765206
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

The locus coeruleus (LC) is a major noradrenergic brain nucleus that regulates states of arousal, optimizes task-oriented decision making, and may also play an important role in modulating the activity of the reproductive neuroendocrine axis. Rodent studies have shown that the LC is responsive to glutamate receptor agonists, and that it expresses various glutamate receptor subunits. However, glutamate receptor subunit expression has not been extensively examined in the primate LC. We previously demonstrated expression of the NR1 NMDA glutamate receptor subunit in the rhesus macaque LC and now extend this work by also examining the expression of non-NMDA (AMPA and kainate) ionotropic glutamate receptor subunits. Using in situ hybridization histochemistry and immunohistochemistry, we confirmed the presence of the obligatory NR1 subunit in the LC. In addition, we demonstrated expression of the AMPA glutamate receptor subunits GluR1, GluR2, and GluR3. More extensive receptor profiling, using rhesus monkey gene microarrays (Affymetrix GeneChip), further corroborated the histological findings and showed expression of mRNA encoding ionotropic glutamate receptor subunits NR2A, NR2D, GluR4, and GluR6, as well as the metabotropic glutamate receptor subunits mGluR1, mGluR3, mGluR4, mGluR5, and mGluR7. These data provide a foundation for future examination of how changes in glutamate receptor composition contribute to the control of primate physiology.

Citing Articles

Subunit-specific expression and function of AMPA receptors in the mouse locus coeruleus.

Kelly L, Brown C, Gibbard A, Jackson T, Swinny J J Anat. 2023; 243(5):813-825.

PMID: 37391270 PMC: 10557397. DOI: 10.1111/joa.13922.


Locus Coeruleus Neurons' Firing Pattern Is Regulated by ERG Voltage-Gated K Channels.

Hasan S, Delicata F, Guasti L, Duranti C, Haidar F, Arcangeli A Int J Mol Sci. 2022; 23(23).

PMID: 36499661 PMC: 9738708. DOI: 10.3390/ijms232315334.


LncRNA COL1A1-014 is involved in the progression of gastric cancer via regulating CXCL12-CXCR4 axis.

Dong X, Zhao Z, Hu Y, Lu Y, Liu P, Zhang L Gastric Cancer. 2019; 23(2):260-272.

PMID: 31650323 DOI: 10.1007/s10120-019-01011-0.


Dopamine Receptor Expression Among Local and Visual Cortex-Projecting Frontal Eye Field Neurons.

Mueller A, Krock R, Shepard S, Moore T Cereb Cortex. 2019; 30(1):148-164.

PMID: 31038690 PMC: 7029694. DOI: 10.1093/cercor/bhz078.


Dysfunctional inhibitory mechanisms in locus coeruleus neurons of the wistar kyoto rat.

Bruzos-Cidon C, Llamosas N, Ugedo L, Torrecilla M Int J Neuropsychopharmacol. 2015; 18(7):pyu122.

PMID: 25586927 PMC: 4540101. DOI: 10.1093/ijnp/pyu122.


References
1.
Dingledine R, Borges K, Bowie D, Traynelis S . The glutamate receptor ion channels. Pharmacol Rev. 1999; 51(1):7-61. View

2.
Vandergriff J, Rasmussen K . The selective mGlu2/3 receptor agonist LY354740 attenuates morphine-withdrawal-induced activation of locus coeruleus neurons and behavioral signs of morphine withdrawal. Neuropharmacology. 1999; 38(2):217-22. DOI: 10.1016/s0028-3908(98)00196-8. View

3.
Goebel D, Poosch M . NMDA receptor subunit gene expression in the rat brain: a quantitative analysis of endogenous mRNA levels of NR1Com, NR2A, NR2B, NR2C, NR2D and NR3A. Brain Res Mol Brain Res. 1999; 69(2):164-70. DOI: 10.1016/s0169-328x(99)00100-x. View

4.
Wu M, Gulyani S, Yau E, Mignot E, Phan B, Siegel J . Locus coeruleus neurons: cessation of activity during cataplexy. Neuroscience. 1999; 91(4):1389-99. PMC: 8848839. DOI: 10.1016/s0306-4522(98)00600-9. View

5.
Horvath T, Peyron C, Diano S, Ivanov A, Aston-Jones G, Kilduff T . Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. J Comp Neurol. 1999; 415(2):145-59. View