» Articles » PMID: 17726166

A Model of Segmental Duplication Formation in Drosophila Melanogaster

Overview
Journal Genome Res
Specialty Genetics
Date 2007 Aug 30
PMID 17726166
Citations 43
Authors
Affiliations
Soon will be listed here.
Abstract

Segmental duplications (SDs) are low-copy repeats of DNA segments that have long been recognized to be involved in genome organization and evolution. But, to date, the mechanism of their formation remains obscure. We propose a model for SD formation that we name "duplication-dependent strand annealing" (DDSA). This model is a variant of the synthesis-dependent strand annealing (SDSA) model--a double-strand break (DSB) homologous repair model. DSB repair in Drosophila melanogaster genome usually occurs primarily through homologous repair, more preferentially through the SDSA model. The DDSA model predicts that after a DSB, the search for an ectopic homologous region--here a repeat--initiates the repair. As expected by the model, the analysis of SDs detected by a computational analysis of the D. melanogaster genome indicates a high enrichment in transposable elements at SD ends. It shows moreover a preferential location of SDs in heterochromatic regions. The model has the advantage of also predicting specific traces left during synthesis. The observed traces support the DDSA model as one model of formation of SDs in D. melanogaster genome. The analysis of these DDSA signatures suggests moreover a sequestration of the dissociated strand in the repair complex.

Citing Articles

Divergent evolution of male-determining loci on proto-Y chromosomes of the housefly.

Li X, Visser S, Son J, Geuverink E, Kivanc E, Wu Y Nat Commun. 2024; 15(1):5984.

PMID: 39013946 PMC: 11252125. DOI: 10.1038/s41467-024-50390-1.


The impact of local genomic properties on the evolutionary fate of genes.

Hara Y, Kuraku S Elife. 2023; 12.

PMID: 37223962 PMC: 10208646. DOI: 10.7554/eLife.82290.


Comprehensive Analysis of Copy Number Variations on Glycoside Hydrolase 45 Genes among Different Strains.

Ding X, Zhao R, Dai Y, Zhang Y, Lin S, Ye J Int J Mol Sci. 2022; 23(23).

PMID: 36499649 PMC: 9735991. DOI: 10.3390/ijms232315323.


DNA transposons mediate duplications via transposition-independent and -dependent mechanisms in metazoans.

Tan S, Ma H, Wang J, Wang M, Wang M, Yin H Nat Commun. 2021; 12(1):4280.

PMID: 34257290 PMC: 8277862. DOI: 10.1038/s41467-021-24585-9.


An Overview of Duplicated Gene Detection Methods: Why the Duplication Mechanism Has to Be Accounted for in Their Choice.

Lallemand T, Leduc M, Landes C, Rizzon C, Lerat E Genes (Basel). 2020; 11(9).

PMID: 32899740 PMC: 7565063. DOI: 10.3390/genes11091046.


References
1.
Formosa T, Alberts B . Purification and characterization of the T4 bacteriophage uvsX protein. J Biol Chem. 1986; 261(13):6107-18. View

2.
Gray Y . It takes two transposons to tango: transposable-element-mediated chromosomal rearrangements. Trends Genet. 2000; 16(10):461-8. DOI: 10.1016/s0168-9525(00)02104-1. View

3.
Paques F, Haber J . Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 1999; 63(2):349-404. PMC: 98970. DOI: 10.1128/MMBR.63.2.349-404.1999. View

4.
Lohe A, Hilliker A, Roberts P . Mapping simple repeated DNA sequences in heterochromatin of Drosophila melanogaster. Genetics. 1993; 134(4):1149-74. PMC: 1205583. DOI: 10.1093/genetics/134.4.1149. View

5.
Gall J, COHEN E, Polan M . Reptitive DNA sequences in drosophila. Chromosoma. 1971; 33(3):319-44. DOI: 10.1007/BF00284948. View