» Articles » PMID: 17687578

Interactive Visuo-motor Therapy System for Stroke Rehabilitation

Overview
Publisher Springer
Date 2007 Aug 10
PMID 17687578
Citations 32
Authors
Affiliations
Soon will be listed here.
Abstract

We present a virtual reality (VR)-based motor neurorehabilitation system for stroke patients with upper limb paresis. It is based on two hypotheses: (1) observed actions correlated with self-generated or intended actions engage cortical motor observation, planning and execution areas ("mirror neurons"); (2) activation in damaged parts of motor cortex can be enhanced by viewing mirrored movements of non-paretic limbs. We postulate that our approach, applied during the acute post-stroke phase, facilitates motor re-learning and improves functional recovery. The patient controls a first-person view of virtual arms in tasks varying from simple (hitting objects) to complex (grasping and moving objects). The therapist adjusts weighting factors in the non-paretic limb to move the paretic virtual limb, thereby stimulating the mirror neuron system and optimizing patient motivation through graded task success. We present the system's neuroscientific background, technical details and preliminary results.

Citing Articles

Monitoring Brain Activity in VR: EEG and Neuroimaging.

Ocklenburg S, Peterburs J Curr Top Behav Neurosci. 2023; 65:47-71.

PMID: 37306852 DOI: 10.1007/7854_2023_423.


Stereoptic serious games as a visual rehabilitation tool for individuals with a residual amblyopia (AMBER trial): a protocol for a crossover randomized controlled trial.

Simon-Martinez C, Antoniou M, Bouthour W, Bavelier D, Levi D, Backus B BMC Ophthalmol. 2023; 23(1):220.

PMID: 37198558 PMC: 10190050. DOI: 10.1186/s12886-023-02944-y.


Comparing the Effects of Differential and Visuo-Motor Training on Functional Performance, Biomechanical, and Psychological Factors in Athletes after ACL Reconstruction: A Randomized Controlled Trial.

Gholami F, Letafatkar A, Moghadas Tabrizi Y, Gokeler A, Rossettini G, Ghanati H J Clin Med. 2023; 12(8).

PMID: 37109182 PMC: 10142379. DOI: 10.3390/jcm12082845.


Efficacy and Safety of Mirror Therapy for Post-stroke Dysphagia: A Systematic Review and Meta-Analysis.

He K, Wu L, Ni F, Li X, Liang K, Ma R Front Neurol. 2022; 13:874994.

PMID: 35860492 PMC: 9289191. DOI: 10.3389/fneur.2022.874994.


Converging Robotic Technologies in Targeted Neural Rehabilitation: A Review of Emerging Solutions and Challenges.

Nizamis K, Athanasiou A, Almpani S, Dimitrousis C, Astaras A Sensors (Basel). 2021; 21(6).

PMID: 33809721 PMC: 8002299. DOI: 10.3390/s21062084.


References
1.
Rizzolatti G, Camarda R, Fogassi L, Gentilucci M, Luppino G, Matelli M . Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movements. Exp Brain Res. 1988; 71(3):491-507. DOI: 10.1007/BF00248742. View

2.
Barreca S, Stratford P, Lambert C, Masters L, Streiner D . Test-retest reliability, validity, and sensitivity of the Chedoke arm and hand activity inventory: a new measure of upper-limb function for survivors of stroke. Arch Phys Med Rehabil. 2005; 86(8):1616-22. DOI: 10.1016/j.apmr.2005.03.017. View

3.
Fadiga L, Craighero L . Electrophysiology of action representation. J Clin Neurophysiol. 2004; 21(3):157-69. DOI: 10.1097/00004691-200405000-00004. View

4.
Binkofski F, Amunts K, Stephan K, Posse S, Schormann T, Freund H . Broca's region subserves imagery of motion: a combined cytoarchitectonic and fMRI study. Hum Brain Mapp. 2001; 11(4):273-85. PMC: 6872088. DOI: 10.1002/1097-0193(200012)11:4<273::aid-hbm40>3.0.co;2-0. View

5.
Buccino G, Binkofski F, Riggio L . The mirror neuron system and action recognition. Brain Lang. 2004; 89(2):370-6. DOI: 10.1016/S0093-934X(03)00356-0. View