Bidirectional Long Short-Term Memory Networks for Predicting the Subcellular Localization of Eukaryotic Proteins
Overview
Authors
Affiliations
An algorithm called Bidirectional Long Short-Term Memory Networks (BLSTM) for processing sequential data is introduced. This supervised learning method trains a special recurrent neural network to use very long ranged symmetric sequence context using a combination of nonlinear processing elements and linear feedback loops for storing long-range context. The algorithm is applied to the sequence-based prediction of protein localization and predicts 93.3 percent novel non-plant proteins and 88.4 percent novel plant proteins correctly, which is an improvement over feedforward and standard recurrent networks solving the same problem. The BLSTM system is available as a web-service (http://www.stepc.gr/~synaptic/blstm.html).
Deep learning for optical tweezers.
Ciarlo A, Ciriza D, Selin M, Marago O, Sasso A, Pesce G Nanophotonics. 2024; 13(17):3017-3035.
PMID: 39634937 PMC: 11502085. DOI: 10.1515/nanoph-2024-0013.
Kim Y, Wang K, Lock R, Nash T, Fleischer S, Wang B IEEE Open J Eng Med Biol. 2024; 5:238-249.
PMID: 38606403 PMC: 11008807. DOI: 10.1109/OJEMB.2024.3377461.
Improved global 250 m 8-day NDVI and EVI products from 2000-2021 using the LSTM model.
Xiong C, Ma H, Liang S, He T, Zhang Y, Zhang G Sci Data. 2023; 10(1):800.
PMID: 37963885 PMC: 10645917. DOI: 10.1038/s41597-023-02695-x.
Deep embeddings to comprehend and visualize microbiome protein space.
Odrzywolek K, Karwowska Z, Jan Majta , Byrski A, Milanowska-Zabel K, Kosciolek T Sci Rep. 2022; 12(1):10332.
PMID: 35725732 PMC: 9209496. DOI: 10.1038/s41598-022-14055-7.
Hajeb-M S, Cascella A, Valentine M, Chon K J Am Heart Assoc. 2021; 10(6):e019065.
PMID: 33663222 PMC: 8174215. DOI: 10.1161/JAHA.120.019065.