» Articles » PMID: 17651921

Meta-analysis of Microarray Results: Challenges, Opportunities, and Recommendations for Standardization

Overview
Journal Gene
Specialty Molecular Biology
Date 2007 Jul 27
PMID 17651921
Citations 61
Authors
Affiliations
Soon will be listed here.
Abstract

Microarray profiling of gene expression is a powerful tool for discovery, but the ability to manage and compare the resulting data can be problematic. Biological, experimental, and technical variations between studies of the same phenotype/phenomena create substantial differences in results. The application of conventional meta-analysis to raw microarray data is complicated by differences in the type of microarray used, gene nomenclatures, species, and analytical methods. An alternative approach to combining multiple microarray studies is to compare the published gene lists which result from the investigators' analyses of the raw data, as implemented in Lists of Lists Annotated (LOLA: www.lola.gwu.edu) and L2L (depts.washington.edu/l2l/). The present review considers both the potential value and the limitations of databasing and enabling the comparison of results from different microarray studies. Further, a major impediment to cross-study comparisons is the absence of a standard for reporting microarray study results. We propose a reporting standard: standard microarray results template (SMART), which will facilitate the integration of microarray studies.

Citing Articles

Bioinformatic meta-analysis reveals novel differentially expressed genes and pathways in sarcoidosis.

van Wijck R, Sharma H, Swagemakers S, Dik W, IJspeert H, Dalm V Front Med (Lausanne). 2024; 11:1381031.

PMID: 38938383 PMC: 11208482. DOI: 10.3389/fmed.2024.1381031.


Candidate MicroRNA Biomarkers in Lupus Nephritis: A Meta-analysis of Profiling Studies in Kidney, Blood and Urine Samples.

Roointan A, Gholaminejad A, Shojaie B, Hudkins K, Gheisari Y Mol Diagn Ther. 2022; 27(2):141-158.

PMID: 36520403 DOI: 10.1007/s40291-022-00627-w.


Meta-Analysis of Whole Blood Transcriptome Datasets Characterizes the Immune Response of Respiratory Syncytial Virus Infection in Children.

Feng Q, Lin S, Liu H, Yang B, Han L, Han X Front Cell Infect Microbiol. 2022; 12:878430.

PMID: 35493728 PMC: 9043598. DOI: 10.3389/fcimb.2022.878430.


The prognostic and clinical significance of IFI44L aberrant downregulation in patients with oral squamous cell carcinoma.

Ou D, Wu Y BMC Cancer. 2021; 21(1):1327.

PMID: 34903206 PMC: 8667451. DOI: 10.1186/s12885-021-09058-y.


Comparative transcriptome analyses reveal genes associated with SARS-CoV-2 infection of human lung epithelial cells.

Chandrashekar D, Athar M, Manne U, Varambally S Sci Rep. 2021; 11(1):16212.

PMID: 34376762 PMC: 8355180. DOI: 10.1038/s41598-021-95733-w.


References
1.
Parkinson H, Kapushesky M, Shojatalab M, Abeygunawardena N, Coulson R, Farne A . ArrayExpress--a public database of microarray experiments and gene expression profiles. Nucleic Acids Res. 2006; 35(Database issue):D747-50. PMC: 1716725. DOI: 10.1093/nar/gkl995. View

2.
Pan F, Chiu C, Pulapura S, Mehan M, Nunez-Iglesias J, Zhang K . Gene Aging Nexus: a web database and data mining platform for microarray data on aging. Nucleic Acids Res. 2006; 35(Database issue):D756-9. PMC: 1669755. DOI: 10.1093/nar/gkl798. View

3.
Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C . Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet. 2001; 29(4):365-71. DOI: 10.1038/ng1201-365. View

4.
Edgar R, Domrachev M, Lash A . Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2001; 30(1):207-10. PMC: 99122. DOI: 10.1093/nar/30.1.207. View

5.
Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan R, Melton D . "Stemness": transcriptional profiling of embryonic and adult stem cells. Science. 2002; 298(5593):597-600. DOI: 10.1126/science.1072530. View