» Articles » PMID: 17644605

Origins of Flagellar Gene Operons and Secondary Flagellar Systems

Overview
Journal J Bacteriol
Specialty Microbiology
Date 2007 Jul 24
PMID 17644605
Citations 47
Authors
Affiliations
Soon will be listed here.
Abstract

Forty-one flagellated species representing 11 bacterial phyla were used to investigate the origin of secondary flagellar systems and the structure and formation of flagellar gene operons over the course of bacterial evolution. Secondary (i.e., lateral) flagellar systems, which are harbored by five of the proteobacterial species considered, originated twice, once in the alphaproteobacterial lineage and again in the common ancestor of the Beta- and Gammaproteobacteria. The order and organization of flagellar genes have undergone extensive shuffling and rearrangement among lineages, and based on the phylogenetic distributions of flagellar gene complexes, the flagellar gene operons existed as small, usually two-gene units in the ancestor of Bacteria and have expanded through the recruitment of new genes and fusion of gene units. In contrast to the evolutionary trend towards larger flagellar gene complexes, operon structures have been highly disrupted through gene disassociation and rearrangements in the Epsilon- and Alphaproteobacteria. These results demonstrate that the genetic basis of this ancient and structurally conserved organelle has been subject to many lineage-specific modifications.

Citing Articles

Annotating microbial functions with ProkFunFind.

Dufault-Thompson K, Jiang X mSystems. 2024; 9(3):e0003624.

PMID: 38364094 PMC: 10949468. DOI: 10.1128/msystems.00036-24.


Disentangling a metabolic cross-feeding in a halophilic archaea-bacteria consortium.

Medina-Chavez N, Torres-Cerda A, Chacon J, Harcombe W, de la Torre-Zavala S, Travisano M Front Microbiol. 2024; 14:1276438.

PMID: 38179456 PMC: 10764424. DOI: 10.3389/fmicb.2023.1276438.


Reassessing the Standard Chemotaxis Framework for Understanding Biased Migration in .

Antani J, Shaji A, Gupta R, Lele P Annu Rev Chem Biomol Eng. 2023; 15(1):51-62.

PMID: 38048436 PMC: 11634455. DOI: 10.1146/annurev-chembioeng-100722-114625.


Genomic profiling and characteristics of a C1 degrading heterotrophic fresh-water bacterium Paracoccus sp. strain DMF.

Maurya S, Arya C, Parmar N, Sathyanarayanan N, Joshi C, Ramanathan G Arch Microbiol. 2023; 206(1):6.

PMID: 38015256 DOI: 10.1007/s00203-023-03729-z.


The molybdate-binding protein ModA is required for -induced UTI.

Huang Y, Chen J, Jiang Q, Huang N, Ding X, Peng L Front Microbiol. 2023; 14:1156273.

PMID: 37180242 PMC: 10174112. DOI: 10.3389/fmicb.2023.1156273.


References
1.
Castresana J . Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000; 17(4):540-52. DOI: 10.1093/oxfordjournals.molbev.a026334. View

2.
Liu R, Ochman H . Stepwise formation of the bacterial flagellar system. Proc Natl Acad Sci U S A. 2007; 104(17):7116-21. PMC: 1852327. DOI: 10.1073/pnas.0700266104. View

3.
McCarter L . Polar flagellar motility of the Vibrionaceae. Microbiol Mol Biol Rev. 2001; 65(3):445-62, table of contents. PMC: 99036. DOI: 10.1128/MMBR.65.3.445-462.2001. View

4.
Cascales E, Lloubes R, Sturgis J . The TolQ-TolR proteins energize TolA and share homologies with the flagellar motor proteins MotA-MotB. Mol Microbiol. 2001; 42(3):795-807. DOI: 10.1046/j.1365-2958.2001.02673.x. View

5.
Aldridge P, Hughes K . Regulation of flagellar assembly. Curr Opin Microbiol. 2002; 5(2):160-5. DOI: 10.1016/s1369-5274(02)00302-8. View