Goldman O, DeFoe A, Qi Y, Jiao Y, Weng S, Houri-Zeevi L
bioRxiv. 2025; .
PMID: 40060408
PMC: 11888250.
DOI: 10.1101/2025.02.25.639765.
Cooke M, Chembars 2nd M, Pitts R
J Insect Sci. 2025; 25(1).
PMID: 39891408
PMC: 11785732.
DOI: 10.1093/jisesa/ieaf012.
Morinaga G, Balcazar D, Badolo A, Iyaloo D, Tantely L, Mouillaud T
bioRxiv. 2025; .
PMID: 39868221
PMC: 11760778.
DOI: 10.1101/2025.01.13.632753.
Lizana P, Mutis A, Palma-Millanao R, Larama G, Antony B, Quiroz A
Insects. 2024; 15(9).
PMID: 39336628
PMC: 11432230.
DOI: 10.3390/insects15090660.
Adavi E, Dos Anjos V, Kotb S, Metz H, Tian D, Zhao Z
bioRxiv. 2024; .
PMID: 39229077
PMC: 11370346.
DOI: 10.1101/2024.08.21.608847.
The complexities of blood-feeding patterns in mosquitoes and sandflies and the burden of disease: A minireview.
Bursali F, Touray M
Vet Med Sci. 2024; 10(5):e1580.
PMID: 39171609
PMC: 11339650.
DOI: 10.1002/vms3.1580.
Odorant receptors for floral- and plant-derived volatiles in the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae).
Pullmann-Lindsley H, Huff R, Boyi J, Pitts R
PLoS One. 2024; 19(5):e0302496.
PMID: 38709760
PMC: 11073699.
DOI: 10.1371/journal.pone.0302496.
Identification of a receptor for the sex pheromone of the vine mealybug, .
Corcoran J, Mahaffee W
Curr Res Insect Sci. 2024; 5:100072.
PMID: 38314008
PMC: 10837065.
DOI: 10.1016/j.cris.2024.100072.
Comparative Transcriptomic Assessment of Chemosensory Genes in Adult and Larval Olfactory Organs of .
Du H, Lu J, Ji K, Wang C, Yao Z, Liu F
Genes (Basel). 2023; 14(12).
PMID: 38136987
PMC: 10742765.
DOI: 10.3390/genes14122165.
Transcriptional and post-transcriptional control of odorant receptor choice in ants.
Brahma A, Frank D, Pastor P, Piekarski P, Wang W, Luo J
Curr Biol. 2023; 33(24):5456-5466.e5.
PMID: 38070504
PMC: 11025690.
DOI: 10.1016/j.cub.2023.11.025.
Automated analysis of feeding behaviors of females of the mosquito Aedes aegypti using a modified flyPAD system.
Henriques-Santos B, Xiong C, Pietrantonio P
Sci Rep. 2023; 13(1):20188.
PMID: 37980438
PMC: 10657447.
DOI: 10.1038/s41598-023-47277-4.
Odor-evoked transcriptomics of Aedes aegypti mosquitoes.
Mappin F, Bellantuono A, Ebrahimi B, DeGennaro M
PLoS One. 2023; 18(10):e0293018.
PMID: 37874813
PMC: 10597520.
DOI: 10.1371/journal.pone.0293018.
A conserved odorant receptor underpins borneol-mediated repellency in culicine mosquitoes.
Vainer Y, Wang Y, Huff R, Perets D, Sar-Shalom E, Yakir E
bioRxiv. 2023; .
PMID: 37577635
PMC: 10418152.
DOI: 10.1101/2023.08.01.548337.
A sucrose-specific receptor in and its putative role in phloem feeding.
Aidlin Harari O, Dekel A, Wintraube D, Vainer Y, Mozes-Koch R, Yakir E
iScience. 2023; 26(5):106752.
PMID: 37234092
PMC: 10206433.
DOI: 10.1016/j.isci.2023.106752.
Structure modelling of odorant receptor from and identification of potential repellent molecules.
Tiwari V, Sowdhamini R
Comput Struct Biotechnol J. 2023; 21:2204-2214.
PMID: 37013002
PMC: 10066510.
DOI: 10.1016/j.csbj.2023.03.005.
Single amino acid residue mediates reciprocal specificity in two mosquito odorant receptors.
Franco F, Xu P, Harris B, Yarov-Yarovoy V, Leal W
Elife. 2022; 11.
PMID: 36511779
PMC: 9799979.
DOI: 10.7554/eLife.82922.
The ovipositor cue indole inhibits animal host attraction in Aedes aegypti (Diptera: Culicidae) mosquitoes.
Dekel A, Sar-Shalom E, Vainer Y, Yakir E, D Bohbot J
Parasit Vectors. 2022; 15(1):422.
PMID: 36369215
PMC: 9652956.
DOI: 10.1186/s13071-022-05545-8.
Imaging and spectral analysis of autofluorescence patterns in larval head structures of mosquito vectors.
Scolari F, Girella A, Croce A
Eur J Histochem. 2022; 66(4).
PMID: 36128772
PMC: 9528535.
DOI: 10.4081/ejh.2022.3462.
Non-canonical odor coding in the mosquito.
Herre M, Goldman O, Lu T, Caballero-Vidal G, Qi Y, Gilbert Z
Cell. 2022; 185(17):3104-3123.e28.
PMID: 35985288
PMC: 9480278.
DOI: 10.1016/j.cell.2022.07.024.
Developing Lines of Queensland Fruit Flies with Different Levels of Response to a Kairomone Lure.
Yazdani M
Insects. 2022; 13(8).
PMID: 35893021
PMC: 9332244.
DOI: 10.3390/insects13080666.