» Articles » PMID: 17632682

Primary Noncompaction of the Ventricular Myocardium from the Morphogenetic Standpoint

Overview
Journal Pediatr Cardiol
Date 2007 Jul 17
PMID 17632682
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

This review compiles the current knowledge of normal and abnormal myocardial morphogenesis to facilitate an unambiguous diagnosis of primary myocardial noncompaction. During the early stages of development, the formation of trabeculae with the resulting increase in myocardial surface is a adaptation of the rapidly growing heart to improve nourishment by exchange diffusion from the cardiac lumen. Once the coronary vasculature has developed, the switch to cardiac nutrient supply through active circulation from the subepicardial space is paralleled by gradual compaction of the myocardial trabeculae. This results in a decrease of the inner, trabeculated myocardial layer with a parallel increase in thickness of the outer, compact myocardial layer. Similar to the direction of coronary arterial development, this process proceeds from the epicardium toward the endocardium and from the base of the heart to the apex. Based on developmental data, congenital myocardial noncompaction represents a failure of normal embryonic myocardial maturation. The time of arrest of this process will determine the extension of myocardial noncompaction within the ventricle. Whereas disturbances of myocardial microcirculation are frequent in these hearts, direct communications between the myocardial cavity and the coronary arteries (sinusoids) do not belong to this morphogenetic entity.

Citing Articles

Non-compaction of the ventricular myocardium associated with large patent ductus arteriosus: primary or secondary?.

Yang W, Yin D, Zhang K, Xiang P, Zhou X, Zheng M BMC Cardiovasc Disord. 2024; 24(1):671.

PMID: 39581959 PMC: 11587748. DOI: 10.1186/s12872-024-04334-8.


Catheter Ablation in Arrhythmic Cardiac Diseases: Endocardial and Epicardial Ablation.

Cheng W, Chung F, Lin Y, Lo L, Chang S, Hu Y Rev Cardiovasc Med. 2024; 23(9):324.

PMID: 39077706 PMC: 11262352. DOI: 10.31083/j.rcm2309324.


RETRACTED: Left Ventricular Non-Compaction in Children: Aetiology and Diagnostic Criteria.

Monda E, De Michele G, Diana G, Verrillo F, Rubino M, Cirillo A Diagnostics (Basel). 2024; 14(1).

PMID: 38201424 PMC: 10871098. DOI: 10.3390/diagnostics14010115.


A novel mutation in the TTN gene resulted in left ventricular noncompaction: a case report and literature review.

Tian S, Liang H, Li X, Cao B, Feng L, Wang L BMC Cardiovasc Disord. 2023; 23(1):352.

PMID: 37460987 PMC: 10353140. DOI: 10.1186/s12872-023-03382-w.


Effect of trabeculated myocardial mass on left ventricle global and regional functions in noncompaction cardiomyopathy.

Yildirim G, Dursun M, Arslan R World J Cardiol. 2021; 13(7):211-222.

PMID: 34367505 PMC: 8326155. DOI: 10.4330/wjc.v13.i7.211.


References
1.
Stollberger C, Finsterer J, Blazek G, Bittner R . Left ventricular non-compaction in a patient with becker's muscular dystrophy. Heart. 1996; 76(4):380. PMC: 484558. DOI: 10.1136/hrt.76.4.380. View

2.
Oechslin E, Attenhofer Jost C, Rojas J, Kaufmann P, Jenni R . Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. J Am Coll Cardiol. 2000; 36(2):493-500. DOI: 10.1016/s0735-1097(00)00755-5. View

3.
Schultheiss T, Xydas S, Lassar A . Induction of avian cardiac myogenesis by anterior endoderm. Development. 1995; 121(12):4203-14. DOI: 10.1242/dev.121.12.4203. View

4.
Ichida F, Tsubata S, Bowles K, Haneda N, Uese K, Miyawaki T . Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome. Circulation. 2001; 103(9):1256-63. DOI: 10.1161/01.cir.103.9.1256. View

5.
King T, Bland Y, Webb S, Barton S, Brown N . Expression of Peg1 (Mest) in the developing mouse heart: involvement in trabeculation. Dev Dyn. 2002; 225(2):212-5. DOI: 10.1002/dvdy.10142. View