» Articles » PMID: 17604319

Molecular Motor-induced Instabilities and Cross Linkers Determine Biopolymer Organization

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2007 Jul 3
PMID 17604319
Citations 37
Authors
Affiliations
Soon will be listed here.
Abstract

All eukaryotic cells rely on the active self-organization of protein filaments to form a responsive intracellular cytoskeleton. The necessity of motility and reaction to stimuli additionally requires pathways that quickly and reversibly change cytoskeletal organization. While thermally driven order-disorder transitions are, from the viewpoint of physics, the most obvious method for controlling states of organization, the timescales necessary for effective cellular dynamics would require temperatures exceeding the physiologically viable temperature range. We report a mechanism whereby the molecular motor myosin II can cause near-instantaneous order-disorder transitions in reconstituted cytoskeletal actin solutions. When motor-induced filament sliding diminishes, the actin network structure rapidly and reversibly self-organizes into various assemblies. Addition of stable cross linkers was found to alter the architectures of ordered assemblies. These isothermal transitions between dynamic disorder and self-assembled ordered states illustrate that the interplay between passive crosslinking and molecular motor activity plays a substantial role in dynamic cellular organization.

Citing Articles

Targeting cytoskeletal biomechanics to modulate airway smooth muscle contraction in asthma.

McCullough M, Joshi I, Pereira N, Fuentes N, Krishnan R, Druey K J Biol Chem. 2024; 301(1):108028.

PMID: 39615690 PMC: 11721269. DOI: 10.1016/j.jbc.2024.108028.


Microscopic interactions control a structural transition in active mixtures of microtubules and molecular motors.

Najma B, Wei W, Baskaran A, Foster P, Duclos G Proc Natl Acad Sci U S A. 2024; 121(2):e2300174121.

PMID: 38175870 PMC: 10786313. DOI: 10.1073/pnas.2300174121.


Cytosolic actin isoforms form networks with different rheological properties that indicate specific biological function.

Nietmann P, Kaub K, Suchenko A, Stenz S, Warnecke C, Balasubramanian M Nat Commun. 2023; 14(1):7989.

PMID: 38042893 PMC: 10693642. DOI: 10.1038/s41467-023-43653-w.


Systematic altering of semiflexible DNA-based polymer networks tunable crosslinking.

Glaser M, Mollenkopf P, Prascevic D, Ferraz C, Kas J, Schnauss J Nanoscale. 2023; 15(16):7374-7383.

PMID: 37039012 PMC: 10134436. DOI: 10.1039/d2nr05615a.


Large and stable: actin aster networks formed entropic forces.

Spukti F, Schnauss J Front Chem. 2022; 10:899478.

PMID: 36118308 PMC: 9481034. DOI: 10.3389/fchem.2022.899478.


References
1.
Girard K, Kuo S, Robinson D . Dictyostelium myosin II mechanochemistry promotes active behavior of the cortex on long time scales. Proc Natl Acad Sci U S A. 2006; 103(7):2103-8. PMC: 1413706. DOI: 10.1073/pnas.0508819103. View

2.
Bagshaw C, Trentham D . The reversibility of adenosine triphosphate cleavage by myosin. Biochem J. 1973; 133(2):323-8. PMC: 1177701. DOI: 10.1042/bj1330323. View

3.
Uhde J, Keller M, Sackmann E, Parmeggiani A, Frey E . Internal motility in stiffening actin-myosin networks. Phys Rev Lett. 2005; 93(26 Pt 1):268101. DOI: 10.1103/PhysRevLett.93.268101. View

4.
Ziebert F, Zimmermann W . Nonlinear competition between asters and stripes in filament-motor systems. Eur Phys J E Soft Matter. 2005; 18(1):41-54. DOI: 10.1140/epje/i2005-10029-3. View

5.
Keller M, Tharmann R, Dichtl M, Bausch A, Sackmann E . Slow filament dynamics and viscoelasticity in entangled and active actin networks. Philos Trans A Math Phys Eng Sci. 2003; 361(1805):699-711; discussion 711-2. DOI: 10.1098/rsta.20021158. View