» Articles » PMID: 17579207

Increased Number of Islet-associated Macrophages in Type 2 Diabetes

Abstract

Activation of the innate immune system in obesity is a risk factor for the development of type 2 diabetes. The aim of the current study was to investigate the notion that increased numbers of macrophages exist in the islets of type 2 diabetes patients and that this may be explained by a dysregulation of islet-derived inflammatory factors. Increased islet-associated immune cells were observed in human type 2 diabetic patients, high-fat-fed C57BL/6J mice, the GK rat, and the db/db mouse. When cultured islets were exposed to a type 2 diabetic milieu or when islets were isolated from high-fat-fed mice, increased islet-derived inflammatory factors were produced and released, including interleukin (IL)-6, IL-8, chemokine KC, granulocyte colony-stimulating factor, and macrophage inflammatory protein 1alpha. The specificity of this response was investigated by direct comparison to nonislet pancreatic tissue and beta-cell lines and was not mimicked by the induction of islet cell death. Further, this inflammatory response was found to be biologically functional, as conditioned medium from human islets exposed to a type 2 diabetic milieu could induce increased migration of monocytes and neutrophils. This migration was blocked by IL-8 neutralization, and IL-8 was localized to the human pancreatic alpha-cell. Therefore, islet-derived inflammatory factors are regulated by a type 2 diabetic milieu and may contribute to the macrophage infiltration of pancreatic islets that we observe in type 2 diabetes.

Citing Articles

Resident memory CD8(+) T cells dominate lymphoid immune cell population in human pancreatic islets in health and type 2 diabetes.

Radenkovic M, Arvastsson J, Sarmiento L, Cilio C BMJ Open Diabetes Res Care. 2025; 13(2).

PMID: 40068923 PMC: 11904352. DOI: 10.1136/bmjdrc-2024-004559.


The MiR-139-5p and CXCR4 axis may play a role in high glucose-induced inflammation by regulating monocyte migration.

Li W, Xu G, Chai G, Ball A, Zhang Q, Kutryk M Sci Rep. 2025; 15(1):6738.

PMID: 40000897 PMC: 11861593. DOI: 10.1038/s41598-025-91100-1.


12-Lipoxygenase inhibition improves glucose homeostasis and obesity-associated inflammation in human gene replacement mice.

Kaylan K, Nargis T, Figatner K, Wang J, Pratuangtham S, Chakraborty A bioRxiv. 2025; .

PMID: 39868153 PMC: 11761697. DOI: 10.1101/2025.01.10.632274.


Association of systemic immunity-inflammation index with type 2 diabetes and insulin resistance in NHANES 2005-2018.

Zhao Q, Liu X, Xu J, Rao X, Liu M Sci Rep. 2024; 14(1):30133.

PMID: 39627335 PMC: 11615196. DOI: 10.1038/s41598-024-79763-8.


Role of the Pancreatic Islet Microvasculature in Health and Disease.

Aplin A, Aghazadeh Y, Mohn O, Hull-Meichle R J Histochem Cytochem. 2024; 72(11-12):711-728.

PMID: 39601198 PMC: 11600425. DOI: 10.1369/00221554241299862.