» Articles » PMID: 17568748

RAS-RAF-MEK-dependent Oxidative Cell Death Involving Voltage-dependent Anion Channels

Abstract

Therapeutics that discriminate between the genetic makeup of normal cells and tumour cells are valuable for treating and understanding cancer. Small molecules with oncogene-selective lethality may reveal novel functions of oncoproteins and enable the creation of more selective drugs. Here we describe the mechanism of action of the selective anti-tumour agent erastin, involving the RAS-RAF-MEK signalling pathway functioning in cell proliferation, differentiation and survival. Erastin exhibits greater lethality in human tumour cells harbouring mutations in the oncogenes HRAS, KRAS or BRAF. Using affinity purification and mass spectrometry, we discovered that erastin acts through mitochondrial voltage-dependent anion channels (VDACs)--a novel target for anti-cancer drugs. We show that erastin treatment of cells harbouring oncogenic RAS causes the appearance of oxidative species and subsequent death through an oxidative, non-apoptotic mechanism. RNA-interference-mediated knockdown of VDAC2 or VDAC3 caused resistance to erastin, implicating these two VDAC isoforms in the mechanism of action of erastin. Moreover, using purified mitochondria expressing a single VDAC isoform, we found that erastin alters the permeability of the outer mitochondrial membrane. Finally, using a radiolabelled analogue and a filter-binding assay, we show that erastin binds directly to VDAC2. These results demonstrate that ligands to VDAC proteins can induce non-apoptotic cell death selectively in some tumour cells harbouring activating mutations in the RAS-RAF-MEK pathway.

Citing Articles

Ferroptosis: a potential target for non-surgical treatment of laryngeal cancer.

Luo Y, He Y, Xu S, Chen Y, Qin F, Hu W Eur Arch Otorhinolaryngol. 2025; .

PMID: 40087171 DOI: 10.1007/s00405-025-09279-y.


VDAC2 and Bak scarcity in liver mitochondria enables targeting hepatocarcinoma while sparing hepatocytes.

Naghdi S, Mishra P, Roy S, Weaver D, Walter L, Davies E Nat Commun. 2025; 16(1):2416.

PMID: 40069152 PMC: 11897174. DOI: 10.1038/s41467-025-56898-4.


Role of environmental pollutants-induced ferroptosis in pulmonary diseases.

Yang L, Qiao Y, Huang Z, Chen Y, Zhang E, Liu Z Front Med (Lausanne). 2025; 12:1542275.

PMID: 40066170 PMC: 11891068. DOI: 10.3389/fmed.2025.1542275.


Cell death in tumor microenvironment: an insight for exploiting novel therapeutic approaches.

Wang W, Li T, Wu K Cell Death Discov. 2025; 11(1):93.

PMID: 40064873 PMC: 11894105. DOI: 10.1038/s41420-025-02376-1.


Ferroptosis of T cell in inflammation and tumour immunity.

Xia X, Wu H, Chen Y, Peng H, Wang S Clin Transl Med. 2025; 15(3):e70253.

PMID: 40045458 PMC: 11882479. DOI: 10.1002/ctm2.70253.


References
1.
Downward J . Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer. 2003; 3(1):11-22. DOI: 10.1038/nrc969. View

2.
Davies H, Bignell G, Cox C, Stephens P, Edkins S, Clegg S . Mutations of the BRAF gene in human cancer. Nature. 2002; 417(6892):949-54. DOI: 10.1038/nature00766. View

3.
Sage J, Miller A, Perez-Mancera P, Wysocki J, Jacks T . Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature. 2003; 424(6945):223-8. DOI: 10.1038/nature01764. View

4.
Cheng E, Sheiko T, Fisher J, Craigen W, Korsmeyer S . VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science. 2003; 301(5632):513-7. DOI: 10.1126/science.1083995. View

5.
Root D, Flaherty S, Kelley B, Stockwell B . Biological mechanism profiling using an annotated compound library. Chem Biol. 2003; 10(9):881-92. DOI: 10.1016/j.chembiol.2003.08.009. View