Luttens A, Vo D, Scaletti E, Wiita E, Almlof I, Wallner O
Nat Commun. 2025; 16(1):1741.
PMID: 39966348
PMC: 11836371.
DOI: 10.1038/s41467-025-56893-9.
Bianco G, Holcomb M, Santos-Martins D, Tillack A, Hansel-Harris A, Forli S
J Chem Inf Model. 2023; 63(17):5631-5640.
PMID: 37639635
PMC: 10756071.
DOI: 10.1021/acs.jcim.3c00832.
Mahmoud A, Masters M, Yang Y, Lill M
Commun Chem. 2023; 3(1):19.
PMID: 36703428
PMC: 9814895.
DOI: 10.1038/s42004-020-0261-x.
Young R, Flitsch S, Grigalunas M, Leeson P, Quinn R, Turner N
JACS Au. 2022; 2(11):2400-2416.
PMID: 36465532
PMC: 9709949.
DOI: 10.1021/jacsau.2c00415.
Parvez M, Karim M, Hasan M, Jaman J, Karim Z, Tahsin T
Int J Biol Macromol. 2020; 163:1787-1797.
PMID: 32950529
PMC: 7495146.
DOI: 10.1016/j.ijbiomac.2020.09.098.
Computational Fragment-Based Drug Design: Current Trends, Strategies, and Applications.
Bian Y, Xie X
AAPS J. 2018; 20(3):59.
PMID: 29633051
PMC: 6618289.
DOI: 10.1208/s12248-018-0216-7.
HTS by NMR for the Identification of Potent and Selective Inhibitors of Metalloenzymes.
Baggio C, Cerofolini L, Fragai M, Luchinat C, Pellecchia M
ACS Med Chem Lett. 2018; 9(2):137-142.
PMID: 29456802
PMC: 5807865.
DOI: 10.1021/acsmedchemlett.7b00483.
NMR-Fragment Based Virtual Screening: A Brief Overview.
Singh M, Tam B, Akabayov B
Molecules. 2018; 23(2).
PMID: 29370102
PMC: 6017141.
DOI: 10.3390/molecules23020233.
Improved pose and affinity predictions using different protocols tailored on the basis of data availability.
Prathipati P, Nagao C, Ahmad S, Mizuguchi K
J Comput Aided Mol Des. 2016; 30(9):817-828.
PMID: 27714493
DOI: 10.1007/s10822-016-9982-4.
Natural-product-derived fragments for fragment-based ligand discovery.
Over B, Wetzel S, Grutter C, Nakai Y, Renner S, Rauh D
Nat Chem. 2012; 5(1):21-8.
PMID: 23247173
DOI: 10.1038/nchem.1506.
Computational fragment-based screening using RosettaLigand: the SAMPL3 challenge.
Kumar A, Zhang K
J Comput Aided Mol Des. 2012; 26(5):603-16.
PMID: 22246345
DOI: 10.1007/s10822-011-9523-0.
Deciphering the Arginine-binding preferences at the substrate-binding groove of Ser/Thr kinases by computational surface mapping.
Ben-Shimon A, Niv M
PLoS Comput Biol. 2011; 7(11):e1002288.
PMID: 22125489
PMC: 3219626.
DOI: 10.1371/journal.pcbi.1002288.
Design of a fragment library that maximally represents available chemical space.
Schulz M, Landstrom J, Bright K, Hubbard R
J Comput Aided Mol Des. 2011; 25(7):611-20.
PMID: 21792630
DOI: 10.1007/s10822-011-9461-x.
Design of a multi-purpose fragment screening library using molecular complexity and orthogonal diversity metrics.
Lau W, Withka J, Hepworth D, Magee T, Du Y, Bakken G
J Comput Aided Mol Des. 2011; 25(7):621-36.
PMID: 21604056
DOI: 10.1007/s10822-011-9434-0.
Protein pockets: inventory, shape, and comparison.
Coleman R, Sharp K
J Chem Inf Model. 2010; 50(4):589-603.
PMID: 20205445
PMC: 2859996.
DOI: 10.1021/ci900397t.
Combinatorial library-based design with Basis Products.
Zhou J, Shi S, Na J, Peng Z, Thacher T
J Comput Aided Mol Des. 2009; 23(10):725-36.
PMID: 19593647
DOI: 10.1007/s10822-009-9297-9.
Fragment-based drug discovery.
Warr W
J Comput Aided Mol Des. 2009; 23(8):453-8.
PMID: 19554264
DOI: 10.1007/s10822-009-9292-1.
The multiple roles of computational chemistry in fragment-based drug design.
Law R, Barker O, Barker J, Hesterkamp T, Godemann R, Andersen O
J Comput Aided Mol Des. 2009; 23(8):459-73.
PMID: 19533374
DOI: 10.1007/s10822-009-9284-1.
Lessons for fragment library design: analysis of output from multiple screening campaigns.
Chen I, Hubbard R
J Comput Aided Mol Des. 2009; 23(8):603-20.
PMID: 19495994
DOI: 10.1007/s10822-009-9280-5.
Docking for fragment inhibitors of AmpC beta-lactamase.
Teotico D, Babaoglu K, Rocklin G, Ferreira R, Giannetti A, Shoichet B
Proc Natl Acad Sci U S A. 2009; 106(18):7455-60.
PMID: 19416920
PMC: 2671983.
DOI: 10.1073/pnas.0813029106.