» Articles » PMID: 17542620

Insights into the Mechanism of Flavoprotein-catalyzed Amine Oxidation from Nitrogen Isotope Effects on the Reaction of N-methyltryptophan Oxidase

Overview
Journal Biochemistry
Specialty Biochemistry
Date 2007 Jun 5
PMID 17542620
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

The mechanism of N-methyltryptophan oxidase, a flavin-dependent amine oxidase from Escherichia coli, was studied using a combination of kinetic isotope effects and theoretical calculations. The 15(kcat/Km) kinetic isotope effect for sarcosine oxidation is pH-dependent with a limiting value of 0.994-0.995 at high pH. Density functional theory calculations on model systems were used to interpret these isotope effects. The isotope effects are inconsistent with proposed mechanisms involving covalent amine-flavin adducts but cannot by themselves conclusively distinguish between some discrete electron-transfer mechanisms and a direct hydride-transfer mechanism, although the latter mechanism is more consistent with the energetics of the reaction.

Citing Articles

Influence of Tryptophan Metabolism on the Protective Effect of Weissella paramesenteroides WpK4 in a Murine Model of Chemotherapy-Induced Intestinal Mucositis.

Guimaraes G, Costa K, da Silva Santana Moura C, Moreira S, Marchiori J, de Menezes Santos A Probiotics Antimicrob Proteins. 2024; .

PMID: 39602009 DOI: 10.1007/s12602-024-10413-1.


Computational Insights into β-Carboline Inhibition of Monoamine Oxidase A.

Prah A, Gavranic T, Perdih A, Dolenc M, Mavri J Molecules. 2022; 27(19).

PMID: 36235246 PMC: 9571839. DOI: 10.3390/molecules27196711.


pH and deuterium isotope effects on the reaction of trimethylamine dehydrogenase with dimethylamine.

Wanninayake U, Subedi B, Fitzpatrick P Arch Biochem Biophys. 2019; 676:108136.

PMID: 31604072 PMC: 6924622. DOI: 10.1016/j.abb.2019.108136.


The enzymes of microbial nicotine metabolism.

Fitzpatrick P Beilstein J Org Chem. 2018; 14:2295-2307.

PMID: 30202483 PMC: 6122326. DOI: 10.3762/bjoc.14.204.


Mechanistic Studies of an Amine Oxidase Derived from d-Amino Acid Oxidase.

Trimmer E, Wanninayake U, Fitzpatrick P Biochemistry. 2017; 56(14):2024-2030.

PMID: 28355481 PMC: 5472355. DOI: 10.1021/acs.biochem.7b00161.


References
1.
Binda C, Coda A, Angelini R, Federico R, Ascenzi P, Mattevi A . A 30-angstrom-long U-shaped catalytic tunnel in the crystal structure of polyamine oxidase. Structure. 1999; 7(3):265-76. DOI: 10.1016/s0969-2126(99)80037-9. View

2.
Fu Y, Liu L, Yu H, Wang Y, Guo Q . Quantum-chemical predictions of absolute standard redox potentials of diverse organic molecules and free radicals in acetonitrile. J Am Chem Soc. 2005; 127(19):7227-34. DOI: 10.1021/ja0421856. View

3.
Brown L, Hamilton G . Some model reactions and a general mechanism for flavoenzyme-catalyzed dehydrogenations. J Am Chem Soc. 1970; 92(24):7225-7. DOI: 10.1021/ja00727a049. View

4.
Pawelek P, Cheah J, Coulombe R, Macheroux P, Ghisla S, Vrielink A . The structure of L-amino acid oxidase reveals the substrate trajectory into an enantiomerically conserved active site. EMBO J. 2000; 19(16):4204-15. PMC: 302035. DOI: 10.1093/emboj/19.16.4204. View

5.
Jang M, Basran J, Scrutton N, Hille R . The reaction of trimethylamine dehydrogenase with trimethylamine. J Biol Chem. 1999; 274(19):13147-54. DOI: 10.1074/jbc.274.19.13147. View