» Articles » PMID: 17534720

New Insights into Oryza Genome Evolution: High Gene Colinearity and Differential Retrotransposon Amplification

Overview
Journal Plant Mol Biol
Date 2007 May 31
PMID 17534720
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

An approximately 247-kb genomic region from FF genome of wild rice Oryza brachyantha, possessing the smallest Oryza genome, was compared to the orthologous approximately 450-kb region from AA genome, O. sativa L. ssp. japonica. 37 of 38 genes in the orthologous regions are shared between japonica and O. brachyantha. Analyses of nucleotide substitution in coding regions suggest the two genomes diverged approximately 10 million years ago. Comparisons of transposable elements (TEs) reveal that the density of DNA TEs in O. brachyantha is comparable to O. sativa; however, the density of RNA TEs is dramatically lower. The genomic fraction of RNA TEs in japonica is two times greater than in O. brachyantha. Differences, particularly in RNA TEs, in this region and in BAC end sequences from five wild and two cultivated Oryza species explain major genome size differences between sativa and brachyantha. Gene expression analyses of three ObDREB1 genes in the sequenced region indicate orthologous genes retain similar expression patterns following cold stress. Our results demonstrate that size and number of RNA TEs play a major role in genomic differentiation and evolution in Oryza. Additionally, distantly related O. brachyantha shares colinearity with O. sativa, offering opportunities to use comparative genomics to explore the genetic diversity of wild species to improve cultivated rice.

Citing Articles

Potential of Oryza officinalis to augment the cold tolerance genetic mechanisms of Oryza sativa by network complementation.

Kitazumi A, Pabuayon I, Ohyanagi H, Fujita M, Osti B, Shenton M Sci Rep. 2018; 8(1):16346.

PMID: 30397229 PMC: 6218501. DOI: 10.1038/s41598-018-34608-z.


Global genomic diversity of Oryza sativa varieties revealed by comparative physical mapping.

Wang X, Kudrna D, Pan Y, Wang H, Liu L, Lin H Genetics. 2014; 196(4):937-49.

PMID: 24424778 PMC: 3982694. DOI: 10.1534/genetics.113.159970.


Comparative sequence analysis of the Ghd7 orthologous regions revealed movement of Ghd7 in the grass genomes.

Yang L, Liu T, Li B, Sui Y, Chen J, Shi J PLoS One. 2012; 7(11):e50236.

PMID: 23185584 PMC: 3503983. DOI: 10.1371/journal.pone.0050236.


Genome-wide analysis of conservation and divergence of microsatellites in rice.

Roorkiwal M, Grover A, Sharma P Mol Genet Genomics. 2009; 282(2):205-15.

PMID: 19484264 DOI: 10.1007/s00438-009-0457-3.


Comparative sequence analysis of MONOCULM1-orthologous regions in 14 Oryza genomes.

Lu F, Ammiraju J, Sanyal A, Zhang S, Song R, Chen J Proc Natl Acad Sci U S A. 2009; 106(6):2071-6.

PMID: 19164767 PMC: 2629783. DOI: 10.1073/pnas.0812798106.


References
1.
Kang X, Ni M . Arabidopsis SHORT HYPOCOTYL UNDER BLUE1 contains SPX and EXS domains and acts in cryptochrome signaling. Plant Cell. 2006; 18(4):921-34. PMC: 1425848. DOI: 10.1105/tpc.105.037879. View

2.
Kellogg E . Evolutionary history of the grasses. Plant Physiol. 2001; 125(3):1198-205. PMC: 1539375. DOI: 10.1104/pp.125.3.1198. View

3.
Mayor C, Brudno M, Schwartz J, Poliakov A, Rubin E, Frazer K . VISTA : visualizing global DNA sequence alignments of arbitrary length. Bioinformatics. 2001; 16(11):1046-7. DOI: 10.1093/bioinformatics/16.11.1046. View

4.
Goff S, Ricke D, Lan T, Presting G, Wang R, Dunn M . A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science. 2002; 296(5565):92-100. DOI: 10.1126/science.1068275. View

5.
Brunner S, Fengler K, Morgante M, Tingey S, Rafalski A . Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell. 2005; 17(2):343-60. PMC: 548811. DOI: 10.1105/tpc.104.025627. View