» Articles » PMID: 17522177

EEG Sharp Waves and Sparse Ensemble Unit Activity in the Macaque Hippocampus

Overview
Journal J Neurophysiol
Specialties Neurology
Physiology
Date 2007 May 25
PMID 17522177
Citations 81
Authors
Affiliations
Soon will be listed here.
Abstract

Neural unit activity and EEGs were recorded from inferior temporal regions of three rhesus macaques chronically implanted with "hyperdrives" holding 12 individually movable tetrodes. Recordings were made from each monkey over a period of approximately 3 mo, while the electrodes were moved by small increments through the hippocampus and neighboring structures. After recording, the monkeys were necropsied, and the brains were sectioned and Nissl-stained, permitting identification of individual electrode tracks. The results establish that hippocampal pyramidal cells are "complex spike cells," firing at overall average rates of approximately 0.3 Hz, with spike trains consisting of long periods of silence interspersed with bursts of activity. The results also establish that the monkey hippocampal EEG shows "sharp wave" events consisting of a high-frequency "ripple" oscillation ( approximately 110 Hz) together with a large slow-wave EEG deflection lasting several hundred milliseconds. The evidence suggests that monkey sharp waves are probably generated mainly in the CA1 region and that sharp waves are associated with an inactive/drowsy-or-sleeping behavioral state, which is also associated with increased hippocampal pyramidal cell activity and increased hippocampal EEG amplitude. The results of this initial study of ensembles of primate hippocampal neurons are consistent with previous studies in rodents and consistent with the hypothesis that theories and models of hippocampal memory function developed on the basis of rat data may be applicable to a wide range of mammalian species.

Citing Articles

Visual Exploration and the Primate Hippocampal Formation.

Buffalo E Hippocampus. 2024; 35(1):e23673.

PMID: 39740028 PMC: 11685163. DOI: 10.1002/hipo.23673.


Circuit dynamics of superficial and deep CA1 pyramidal cells and inhibitory cells in freely moving macaques.

Abbaspoor S, Hoffman K Cell Rep. 2024; 43(8):114519.

PMID: 39018243 PMC: 11445748. DOI: 10.1016/j.celrep.2024.114519.


Primacy of vision shapes behavioral strategies and neural substrates of spatial navigation in marmoset hippocampus.

Piza D, Corrigan B, Gulli R, Do Carmo S, Cuello A, Muller L Nat Commun. 2024; 15(1):4053.

PMID: 38744848 PMC: 11093997. DOI: 10.1038/s41467-024-48374-2.


Learning, Fast and Slow: Single- and Many-Shot Learning in the Hippocampus.

Liao Z, Losonczy A Annu Rev Neurosci. 2024; 47(1):187-209.

PMID: 38663090 PMC: 11519319. DOI: 10.1146/annurev-neuro-102423-100258.


A machine learning toolbox for the analysis of sharp-wave ripples reveals common waveform features across species.

Navas-Olive A, Rubio A, Abbaspoor S, Hoffman K, de la Prida L Commun Biol. 2024; 7(1):211.

PMID: 38438533 PMC: 10912113. DOI: 10.1038/s42003-024-05871-w.