» Articles » PMID: 17512259

CaCORE Version 3: Implementation of a Model Driven, Service-oriented Architecture for Semantic Interoperability

Overview
Journal J Biomed Inform
Publisher Elsevier
Date 2007 May 22
PMID 17512259
Citations 41
Authors
Affiliations
Soon will be listed here.
Abstract

One of the requirements for a federated information system is interoperability, the ability of one computer system to access and use the resources of another system. This feature is particularly important in biomedical research systems, which need to coordinate a variety of disparate types of data. In order to meet this need, the National Cancer Institute Center for Bioinformatics (NCICB) has created the cancer Common Ontologic Representation Environment (caCORE), an interoperability infrastructure based on Model Driven Architecture. The caCORE infrastructure provides a mechanism to create interoperable biomedical information systems. Systems built using the caCORE paradigm address both aspects of interoperability: the ability to access data (syntactic interoperability) and understand the data once retrieved (semantic interoperability). This infrastructure consists of an integrated set of three major components: a controlled terminology service (Enterprise Vocabulary Services), a standards-based metadata repository (the cancer Data Standards Repository) and an information system with an Application Programming Interface (API) based on Domain Model Driven Architecture. This infrastructure is being leveraged to create a Semantic Service-Oriented Architecture (SSOA) for cancer research by the National Cancer Institute's cancer Biomedical Informatics Grid (caBIG).

Citing Articles

NCI's Proteomic Data Commons: A Cloud-Based Proteomics Repository Empowering Comprehensive Cancer Analysis through Cross-Referencing with Genomic and Imaging Data.

Thangudu R, Holck M, Singhal D, Pilozzi A, Edwards N, Rudnick P Cancer Res Commun. 2024; 4(9):2480-2488.

PMID: 39225545 PMC: 11413857. DOI: 10.1158/2767-9764.CRC-24-0243.


NIH HEAL Clinical Data Elements (CDE) implementation: NIH HEAL Initiative IMPOWR network IDEA-CC.

Adams M, Hurley R, Siddons A, Topaloglu U, Wandner L Pain Med. 2023; 24(7):743-749.

PMID: 36799548 PMC: 10321760. DOI: 10.1093/pm/pnad018.


Using an artificial neural network to map cancer common data elements to the biomedical research integrated domain group model in a semi-automated manner.

Renner R, Li S, Huang Y, VAN DER Zijp-Tan A, Tan S, Li D BMC Med Inform Decis Mak. 2019; 19(Suppl 7):276.

PMID: 31865899 PMC: 6927104. DOI: 10.1186/s12911-019-0979-5.


Implementing the FAIR Data Principles in precision oncology: review of supporting initiatives.

Vesteghem C, Brondum R, Sonderkaer M, Sommer M, Schmitz A, Bodker J Brief Bioinform. 2019; 21(3):936-945.

PMID: 31263868 PMC: 7299292. DOI: 10.1093/bib/bbz044.


An information model for computable cancer phenotypes.

Hochheiser H, Castine M, Harris D, Savova G, Jacobson R BMC Med Inform Decis Mak. 2016; 16(1):121.

PMID: 27629872 PMC: 5024416. DOI: 10.1186/s12911-016-0358-4.


References
1.
Kudla K, Rallins M . SNOMED: a controlled vocabulary for computer-based patient records. J AHIMA. 1998; 69(5):40-4; quiz 45-6. View

2.
Tuttle M, Olson N, Erlbaum M, Sherertz D, Lipow S, Cole W . MEME-II supports the cooperative management of terminology. Proc AMIA Annu Fall Symp. 1996; :84-8. PMC: 2233169. View

3.
Fragoso G, de Coronado S, Haber M, Hartel F, Wright L . Overview and utilization of the NCI thesaurus. Comp Funct Genomics. 2008; 5(8):648-54. PMC: 2447470. DOI: 10.1002/cfg.445. View

4.
Bodenreider O, Hayamizu T, Ringwald M, de Coronado S, Zhang S . Of mice and men: aligning mouse and human anatomies. AMIA Annu Symp Proc. 2006; :61-5. PMC: 1560846. View

5.
Saltz J, Oster S, Hastings S, Langella S, Kurc T, Sanchez W . caGrid: design and implementation of the core architecture of the cancer biomedical informatics grid. Bioinformatics. 2006; 22(15):1910-6. DOI: 10.1093/bioinformatics/btl272. View