» Articles » PMID: 17503054

Kármán Vortex Street Detection by the Lateral Line

Overview
Publisher Springer
Date 2007 May 16
PMID 17503054
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Fish use the lateral line system for prey detection, predator avoidance, schooling behavior, intraspecific communication and spatial orientation. In addition the lateral line may be important for station holding and for the detection of the hydrodynamic trails (vortex streets) generated by swimming fish. We investigated the responses of anterior lateral line nerve fibers of goldfish, Carassius auratus, to unidirectional water flow (10 cm s(-1)) and to running water that contained a Kármán vortex street. Compared to still water conditions, both unidirectional water flow and Kármán vortex streets caused a similar increase in the discharge rate of anterior lateral line nerve fibers. If exposed to a Kármán vortex street, the amplitude of spike train frequency spectra increased at the vortex shedding frequency. This increase was especially pronounced if the fish intercepted the edge of a Kármán vortex street. Our data show that the vortex shedding frequency can be retrieved from the responses of anterior lateral line nerve fibers.

Citing Articles

The incomparable fascination of comparative physiology: 40 years with animals in the field and laboratory.

Bleckmann H J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2023; 210(2):211-226.

PMID: 37987801 PMC: 10995018. DOI: 10.1007/s00359-023-01681-3.


Corollary discharge enables proprioception from lateral line sensory feedback.

Skandalis D, Lunsford E, Liao J PLoS Biol. 2021; 19(10):e3001420.

PMID: 34634044 PMC: 8530527. DOI: 10.1371/journal.pbio.3001420.


Bidirectional biomimetic flow sensing with antiparallel and curved artificial hair sensors.

Abels C, Qualtieri A, Lober T, Mariotti A, Chambers L, De Vittorio M Beilstein J Nanotechnol. 2019; 10:32-46.

PMID: 30680277 PMC: 6334809. DOI: 10.3762/bjnano.10.4.


A time-stamp mechanism may provide temporal information necessary for egocentric to allocentric spatial transformations.

Wallach A, Harvey-Girard E, Jun J, Longtin A, Maler L Elife. 2018; 7.

PMID: 30465523 PMC: 6264071. DOI: 10.7554/eLife.36769.


Head width influences flow sensing by the lateral line canal system in fishes.

Yanagitsuru Y, Akanyeti O, Liao J J Exp Biol. 2018; 221(Pt 21).

PMID: 30194249 PMC: 6240294. DOI: 10.1242/jeb.180877.


References
1.
Voigt R, Carton A, Montgomery J . Responses of anterior lateral line afferent neurones to water flow. J Exp Biol. 2000; 203(Pt 16):2495-502. DOI: 10.1242/jeb.203.16.2495. View

2.
Puzdrowski R . Peripheral distribution and central projections of the lateral-line nerves in goldfish, Carassius auratus. Brain Behav Evol. 1989; 34(2):110-31. DOI: 10.1159/000116496. View

3.
Dehnhardt G, Mauck B, Hanke W, Bleckmann H . Hydrodynamic trail-following in harbor seals (Phoca vitulina). Science. 2001; 293(5527):102-4. DOI: 10.1126/science.1060514. View

4.
Spath M, Schweickert W . The effect of metacaine (MS-222) on the activity of the efferent and afferent nerves in the teleost lateral-line system. Naunyn Schmiedebergs Arch Pharmacol. 1977; 297(1):9-16. DOI: 10.1007/BF00508804. View

5.
Drucker , Lauder . Locomotor forces on a swimming fish: three-dimensional vortex wake dynamics quantified using digital particle image velocimetry. J Exp Biol. 1999; 202(Pt 18):2393-2412. DOI: 10.1242/jeb.202.18.2393. View