Hydrodynamics and Rheology of Active Liquid Crystals: a Numerical Investigation
Overview
Authors
Affiliations
We report numerical studies of the hydrodynamics and rheology of an active liquid crystal. We confirm the existence of a transition between a passive and an active phase, with spontaneous flow in steady state. We explore how the velocity profile changes with activity, and we point out the difference in behavior for flow-aligning and tumbling materials. We find that an active material can thicken or thin under a flow, or even exhibit both behaviors as the forcing changes.
Ilinca T, Ilis M, Micutz M, Circu V Gels. 2023; 9(10).
PMID: 37888351 PMC: 10606689. DOI: 10.3390/gels9100777.
Acoustically propelled nano- and microcones: fast forward and backward motion.
Voss J, Wittkowski R Nanoscale Adv. 2022; 4(1):281-293.
PMID: 36132955 PMC: 9417971. DOI: 10.1039/d1na00655j.
On the shape-dependent propulsion of nano- and microparticles by traveling ultrasound waves.
Voss J, Wittkowski R Nanoscale Adv. 2022; 2(9):3890-3899.
PMID: 36132771 PMC: 9417689. DOI: 10.1039/d0na00099j.
Senyuk B, Mozaffari A, Crust K, Zhang R, de Pablo J, Smalyukh I Sci Adv. 2021; 7(25).
PMID: 34144988 PMC: 8213233. DOI: 10.1126/sciadv.abg0377.
Activity pulses induce spontaneous flow reversals in viscoelastic environments.
Plan E, Yeomans J, Doostmohammadi A J R Soc Interface. 2021; 18(177):20210100.
PMID: 33849330 PMC: 8086915. DOI: 10.1098/rsif.2021.0100.