» Articles » PMID: 17494067

Peptide-mediated Interference with Influenza A Virus Polymerase

Overview
Journal J Virol
Date 2007 May 12
PMID 17494067
Citations 59
Authors
Affiliations
Soon will be listed here.
Abstract

The assembly of the polymerase complex of influenza A virus from the three viral polymerase subunits PB1, PB2, and PA is required for viral RNA synthesis. We show that peptides which specifically bind to the protein-protein interaction domains in the subunits responsible for complex formation interfere with polymerase complex assembly and inhibit viral replication. Specifically, we provide evidence that a 25-amino-acid peptide corresponding to the PA-binding domain of PB1 blocks the polymerase activity of influenza A virus and inhibits viral spread. Targeting polymerase subunit interactions therefore provides a novel strategy to develop antiviral compounds against influenza A virus or other viruses.

Citing Articles

Antiviral strategies against influenza virus: an update on approved and innovative therapeutic approaches.

Bonomini A, Mercorelli B, Loregian A Cell Mol Life Sci. 2025; 82(1):75.

PMID: 39945883 PMC: 11825441. DOI: 10.1007/s00018-025-05611-1.


A Novel Peptide from VP1 of EV-D68 Exhibits Broad-Spectrum Antiviral Activity Against Human Enteroviruses.

Lin X, Sun Q, Cao Y, Li Z, Xu C, Liu J Biomolecules. 2024; 14(10).

PMID: 39456264 PMC: 11506774. DOI: 10.3390/biom14101331.


The PB2 I714S mutation influenced mammalian adaptation of the H3N2 canine influenza virus by interfering with nuclear import efficiency and RNP complex assembly.

Li X, Jia T, Wang K, Wang L, Zhou L, Li M Emerg Microbes Infect. 2024; 13(1):2387439.

PMID: 39139051 PMC: 11328605. DOI: 10.1080/22221751.2024.2387439.


Cryptic proteins translated from deletion-containing viral genomes dramatically expand the influenza virus proteome.

Ranum J, Ledwith M, Alnaji F, Diefenbacher M, Orton R, Sloan E Nucleic Acids Res. 2024; 52(6):3199-3212.

PMID: 38407436 PMC: 11014358. DOI: 10.1093/nar/gkae133.


Cryptic proteins translated from deletion-containing viral genomes dramatically expand the influenza virus proteome.

Ranum J, Ledwith M, Alnaji F, Diefenbacher M, Orton R, Sloan E bioRxiv. 2024; .

PMID: 38168266 PMC: 10760031. DOI: 10.1101/2023.12.12.570638.


References
1.
Naffakh N, van der Werf S . Comparative analysis of the ability of the polymerase complexes of influenza viruses type A, B and C to assemble into functional RNPs that allow expression and replication of heterotypic model RNA templates in vivo. Virology. 1999; 265(2):342-53. DOI: 10.1006/viro.1999.0059. View

2.
Ohtsu Y, Honda Y, Sakata Y, Kato H, Toyoda T . Fine mapping of the subunit binding sites of influenza virus RNA polymerase. Microbiol Immunol. 2002; 46(3):167-75. DOI: 10.1111/j.1348-0421.2002.tb02682.x. View

3.
Vives E, Richard J, Rispal C, Lebleu B . TAT peptide internalization: seeking the mechanism of entry. Curr Protein Pept Sci. 2003; 4(2):125-32. DOI: 10.2174/1389203033487306. View

4.
Hartlieb B, Modrof J, Muhlberger E, Klenk H, Becker S . Oligomerization of Ebola virus VP30 is essential for viral transcription and can be inhibited by a synthetic peptide. J Biol Chem. 2003; 278(43):41830-6. DOI: 10.1074/jbc.M307036200. View

5.
Poole E, Elton D, Medcalf L, Digard P . Functional domains of the influenza A virus PB2 protein: identification of NP- and PB1-binding sites. Virology. 2004; 321(1):120-33. DOI: 10.1016/j.virol.2003.12.022. View