» Articles » PMID: 17473007

Crystal Structure of the C-terminal Domain of Splicing Factor Prp8 Carrying Retinitis Pigmentosa Mutants

Overview
Journal Protein Sci
Specialty Biochemistry
Date 2007 May 3
PMID 17473007
Citations 34
Authors
Affiliations
Soon will be listed here.
Abstract

Prp8 is a critical pre-mRNA splicing factor. Prp8 is proposed to help form and stabilize the spliceosome catalytic core and to be an important regulator of spliceosome activation. Mutations in human Prp8 (hPrp8) cause a severe form of the genetic disorder retinitis pigmentosa, RP13. Understanding the molecular mechanism of Prp8's function in pre-mRNA splicing and RP13 has been hindered by its large size (over 2000 amino acids) and remarkably low-sequence similarity with other proteins. Here we present the crystal structure of the C-terminal domain (the last 273 residues) of Caenorhabditis elegans Prp8 (cPrp8). The core of the C-terminal domain is an alpha/beta structure that forms the MPN (Mpr1, Pad1 N-terminal) fold but without Zn(2+) coordination. We propose that the C-terminal domain is a protein interaction domain instead of a Zn(2+)-dependent metalloenzyme as proposed for some MPN proteins. Mapping of RP13 mutants on the Prp8 structure suggests that these residues constitute a binding surface between Prp8 and other partner(s), and the disruption of this interaction provides a plausible molecular mechanism for RP13.

Citing Articles

Emerging functions of pseudoenzymes.

Goldberg T, Sreelatha A Biochem J. 2023; 480(10):715-728.

PMID: 37204401 PMC: 10211241. DOI: 10.1042/BCJ20220373.


Structural and functional investigation of the human snRNP assembly factor AAR2 in complex with the RNase H-like domain of PRPF8.

Preussner M, Santos K, Alles J, Heroven C, Heyd F, Wahl M Acta Crystallogr D Struct Biol. 2022; 78(Pt 11):1373-1383.

PMID: 36322420 PMC: 9629490. DOI: 10.1107/S2059798322009755.


Functional Assessment of Patient-Derived Retinal Pigment Epithelial Cells Edited by CRISPR/Cas9.

Foltz L, Howden S, Thomson J, Clegg D Int J Mol Sci. 2018; 19(12).

PMID: 30572641 PMC: 6321630. DOI: 10.3390/ijms19124127.


Structural dynamics of the N-terminal domain and the Switch loop of Prp8 during spliceosome assembly and activation.

Jia X, Sun C Nucleic Acids Res. 2018; 46(8):3833-3840.

PMID: 29635373 PMC: 5934631. DOI: 10.1093/nar/gky242.


Understanding pre-mRNA splicing through crystallography.

Espinosa S, Zhang L, Li X, Zhao R Methods. 2017; 125:55-62.

PMID: 28506657 PMC: 5546983. DOI: 10.1016/j.ymeth.2017.04.023.


References
1.
Corpet F . Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 1988; 16(22):10881-90. PMC: 338945. DOI: 10.1093/nar/16.22.10881. View

2.
van Lith-Verhoeven J, Sohocki M, Deutman A, Brink H, Cremers F, Hoyng C . Clinical characterization, linkage analysis, and PRPC8 mutation analysis of a family with autosomal dominant retinitis pigmentosa type 13 (RP13). Ophthalmic Genet. 2002; 23(1):1-12. DOI: 10.1076/opge.23.1.1.2206. View

3.
Lesburg C, Huang C, Christianson D, Fierke C . Histidine --> carboxamide ligand substitutions in the zinc binding site of carbonic anhydrase II alter metal coordination geometry but retain catalytic activity. Biochemistry. 1998; 36(50):15780-91. DOI: 10.1021/bi971296x. View

4.
Yao T, Cohen R . A cryptic protease couples deubiquitination and degradation by the proteasome. Nature. 2002; 419(6905):403-7. DOI: 10.1038/nature01071. View

5.
Kondo H, Tahira T, Mizota A, Adachi-Usami E, Oshima K, Hayashi K . Diagnosis of autosomal dominant retinitis pigmentosa by linkage-based exclusion screening with multiple locus-specific microsatellite markers. Invest Ophthalmol Vis Sci. 2003; 44(3):1275-81. DOI: 10.1167/iovs.02-0895. View