Vincent J, Maertens M, Aguilar G
J Vis. 2024; 24(5):5.
PMID: 38722273
PMC: 11090143.
DOI: 10.1167/jov.24.5.5.
Nedimovic P, Zdravkovic S, Domijan D
Sci Rep. 2022; 12(1):22039.
PMID: 36543784
PMC: 9772371.
DOI: 10.1038/s41598-022-22395-7.
Kobayashi Y, Kitaoka A
Front Psychol. 2022; 13:915672.
PMID: 35874357
PMC: 9305333.
DOI: 10.3389/fpsyg.2022.915672.
Schmittwilken L, Maertens M
J Vis. 2022; 22(8):5.
PMID: 35834376
PMC: 9290315.
DOI: 10.1167/jov.22.8.5.
Yang J, Zhang Y
Front Psychol. 2021; 12:666074.
PMID: 33953690
PMC: 8091797.
DOI: 10.3389/fpsyg.2021.666074.
Lightness induction enhancements and limitations at low frequency modulations across a variety of stimulus contexts.
Vinke L, Yazdanbakhsh A
PeerJ. 2020; 8:e8918.
PMID: 32351782
PMC: 7183748.
DOI: 10.7717/peerj.8918.
Kitaoka's Tomato: Two Simple Explanations Based on Information in the Stimulus.
Shapiro A, Hedjar L, Dixon E, Kitaoka A
Iperception. 2018; 9(1):2041669517749601.
PMID: 29344332
PMC: 5764143.
DOI: 10.1177/2041669517749601.
Bioplausible multiscale filtering in retino-cortical processing as a mechanism in perceptual grouping.
Nematzadeh N, Powers D, Lewis T
Brain Inform. 2017; 4(4):271-293.
PMID: 28887785
PMC: 5709283.
DOI: 10.1007/s40708-017-0072-8.
Noise masking of White's illusion exposes the weakness of current spatial filtering models of lightness perception.
Betz T, Shapley R, Wichmann F, Maertens M
J Vis. 2015; 15(14):1.
PMID: 26426914
PMC: 6894438.
DOI: 10.1167/15.14.1.
Testing the role of luminance edges in White's illusion with contour adaptation.
Betz T, Shapley R, Wichmann F, Maertens M
J Vis. 2015; 15(11):14.
PMID: 26305862
PMC: 6897287.
DOI: 10.1167/15.11.14.
An exponential filter model predicts lightness illusions.
Zeman A, Brooks K, Ghebreab S
Front Hum Neurosci. 2015; 9:368.
PMID: 26157381
PMC: 4478851.
DOI: 10.3389/fnhum.2015.00368.
What visual illusions tell us about underlying neural mechanisms and observer strategies for tackling the inverse problem of achromatic perception.
Blakeslee B, McCourt M
Front Hum Neurosci. 2015; 9:205.
PMID: 25954181
PMC: 4405616.
DOI: 10.3389/fnhum.2015.00205.
The Oriented Difference of Gaussians (ODOG) model of brightness perception: Overview and executable Mathematica notebooks.
Blakeslee B, Cope D, McCourt M
Behav Res Methods. 2015; 48(1):306-12.
PMID: 25761392
PMC: 4567956.
DOI: 10.3758/s13428-015-0573-4.
A Neurocomputational account of the role of contour facilitation in brightness perception.
Domijan D
Front Hum Neurosci. 2015; 9:93.
PMID: 25745396
PMC: 4333805.
DOI: 10.3389/fnhum.2015.00093.
Luminance gradient configuration determines perceived lightness in a simple geometric illusion.
Pereverzeva M, Murray S
Front Hum Neurosci. 2014; 8:977.
PMID: 25538600
PMC: 4256997.
DOI: 10.3389/fnhum.2014.00977.
Mach bands explained by response normalization.
Kingdom F
Front Hum Neurosci. 2014; 8:843.
PMID: 25408643
PMC: 4219435.
DOI: 10.3389/fnhum.2014.00843.
Scale-invariance in brightness illusions implicates object-level visual processing.
Dixon E, Shapiro A, Lu Z
Sci Rep. 2014; 4:3900.
PMID: 24473496
PMC: 3905277.
DOI: 10.1038/srep03900.
Depth effect on lightness revisited: The role of articulation, proximity and fields of illumination.
Radonjic A, Gilchrist A
Iperception. 2013; 4(6):437-55.
PMID: 24349701
PMC: 3859559.
DOI: 10.1068/i0575.
Dynamic brightness induction causes flicker adaptation, but only along the edges: evidence against the neural filling-in of brightness.
Robinson A, de Sa V
J Vis. 2013; 13(6):17.
PMID: 23729768
PMC: 3670579.
DOI: 10.1167/13.6.17.
A neurodynamical model of brightness induction in v1.
Penacchio O, Otazu X, Dempere-Marco L
PLoS One. 2013; 8(5):e64086.
PMID: 23717536
PMC: 3661450.
DOI: 10.1371/journal.pone.0064086.