» Articles » PMID: 1745029

Renal Ammoniagenesis in Humans with Chronic Potassium Depletion

Overview
Journal Kidney Int
Publisher Elsevier
Specialty Nephrology
Date 1991 Oct 1
PMID 1745029
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Renal ammonia production and distribution and ammonia precursor utilization were evaluated in eight patients with chronic potassium depletion (CPD) and aldosterone-producing adenoma and in 20 controls. In CPD, urinary ammonia excretion and ammonia added to renal venous blood were about twofold higher than in controls; thus, total ammonia production was significantly augmented (88.0 +/- 10.3 mumol/min.1.73 m2 vs. 45.0 +/- 2.6 in controls). Total ammonia production was inversely correlated with serum potassium and directly correlated with urine flow. Stepwise multiple regression analysis showed that both factors, mainly serum potassium, significantly influence ammonia production and account for 61.4% of variations in ammonia production. Renal extraction of glutamine was significantly increased (56.6 +/- 5.9 mumol/min.1.73 m2 vs. 34.6 +/- 3.1 in controls), and this could account for ammonia production. The ratio of urinary ammonia excretion to total ammonia production, an index of the intrarenal ammonia distribution, was similar in patients and controls, and was significantly correlated with urine pH and true renal blood flow (RBF). Stepwise multiple regression analysis showed that RBF, urine pH and urine flow also significantly affected ammonia distribution. However, these factors accounted for only 41.7% of variations in intrarenal ammonia partition, urine pH having a minor role. We conclude that in patients with CPD other factors besides urine pH, urine flow and RBF intervene in the ammonia partition between urine and blood.

Citing Articles

Hypokalaemia - an active contributor to hepatic encephalopathy?.

Mikkelsen A, Thomsen K, Vilstrup H, Aagaard N Metab Brain Dis. 2022; 38(5):1765-1768.

PMID: 36326977 DOI: 10.1007/s11011-022-01096-0.


A mathematical model of the rat kidney. III. Ammonia transport.

Weinstein A Am J Physiol Renal Physiol. 2021; 320(6):F1059-F1079.

PMID: 33779315 PMC: 8285647. DOI: 10.1152/ajprenal.00008.2021.


Regulation of Rhcg, an ammonia transporter, by aldosterone in the kidney.

Eguchi K, Izumi Y, Yasuoka Y, Nakagawa T, Ono M, Maruyama K J Endocrinol. 2021; 249(2):95-112.

PMID: 33705345 PMC: 9428946. DOI: 10.1530/JOE-20-0267.


Hypokalemic Nephropathy.

Yalamanchili H, Calp-Inal S, Zhou X, Choudhury D Kidney Int Rep. 2018; 3(6):1482-1488.

PMID: 30450476 PMC: 6224672. DOI: 10.1016/j.ekir.2018.07.014.


A case of hypokalemia and proteinuria with a new mutation in the SLC12A3 Gene.

Chen Q, Wu Y, Zhao J, Jia Y, Wang W BMC Nephrol. 2018; 19(1):275.

PMID: 30340552 PMC: 6194551. DOI: 10.1186/s12882-018-1083-2.