Tizabi D, Hill R
J Ind Microbiol Biotechnol. 2023; 50(1).
PMID: 37460166
PMC: 10548855.
DOI: 10.1093/jimb/kuad017.
Hagaggi N, Abdul-Raouf U
Microb Cell Fact. 2023; 22(1):90.
PMID: 37138322
PMC: 10155329.
DOI: 10.1186/s12934-023-02108-z.
Nupur , Kuzma M, Hajek J, Hrouzek P, Gardiner A, Lukes M
Sci Rep. 2021; 11(1):15964.
PMID: 34354109
PMC: 8342508.
DOI: 10.1038/s41598-021-95254-6.
Dawoud T, Alharbi N, Theruvinthalakal A, Thekkangil A, Kadaikunnan S, Khaled J
Saudi J Biol Sci. 2020; 27(5):1403-1411.
PMID: 32346353
PMC: 7182979.
DOI: 10.1016/j.sjbs.2019.11.031.
DeBritto S, Gajbar T, Satapute P, Sundaram L, Lakshmikantha R, Jogaiah S
Sci Rep. 2020; 10(1):1542.
PMID: 32005900
PMC: 6994680.
DOI: 10.1038/s41598-020-58335-6.
Carotenoids are used as regulators for membrane fluidity by Staphylococcus xylosus.
Seel W, Baust D, Sons D, Albers M, Etzbach L, Fuss J
Sci Rep. 2020; 10(1):330.
PMID: 31941915
PMC: 6962212.
DOI: 10.1038/s41598-019-57006-5.
Functional annotation of hypothetical proteins from the Exiguobacterium antarcticum strain B7 reveals proteins involved in adaptation to extreme environments, including high arsenic resistance.
da Costa W, Araujo C, Dias L, Pereira L, Thyeska Castro Alves J, Araujo F
PLoS One. 2018; 13(6):e0198965.
PMID: 29940001
PMC: 6016940.
DOI: 10.1371/journal.pone.0198965.
Diversity and bioprospective potential (cold-active enzymes) of cultivable marine bacteria from the subarctic glacial Fjord, Kongsfjorden.
Prasad S, Manasa P, Buddhi S, Tirunagari P, Begum Z, Rajan S
Curr Microbiol. 2013; 68(2):233-8.
PMID: 24121613
DOI: 10.1007/s00284-013-0467-6.
UV and cold tolerance of a pigment-producing Antarctic Janthinobacterium sp. Ant5-2.
Mojib N, Farhoomand A, Andersen D, Bej A
Extremophiles. 2013; 17(3):367-78.
PMID: 23512118
DOI: 10.1007/s00792-013-0525-9.
Diversity of chemotactic heterotrophic bacteria associated with arctic cyanobacteria.
Prasad S, Pratibha M, Manasa P, Buddhi S, Begum Z, Shivaji S
Curr Microbiol. 2012; 66(1):64-71.
PMID: 23053490
DOI: 10.1007/s00284-012-0243-z.
Antioxidant capacity of novel pigments from an Antarctic bacterium.
Correa-Llanten D, Amenabar M, Blamey J
J Microbiol. 2012; 50(3):374-9.
PMID: 22752899
DOI: 10.1007/s12275-012-2029-1.
Bacterial diversity and bioprospecting for cold-active lipases, amylases and proteases, from culturable bacteria of kongsfjorden and Ny-alesund, Svalbard, Arctic.
Srinivas T, Nageswara Rao S, Vardhan Reddy P, Pratibha M, Sailaja B, Kavya B
Curr Microbiol. 2009; 59(5):537-47.
PMID: 19680721
DOI: 10.1007/s00284-009-9473-0.
Importance of trmE for growth of the psychrophile Pseudomonas syringae at low temperatures.
Singh A, Pindi P, Dube S, Sundareswaran V, Shivaji S
Appl Environ Microbiol. 2009; 75(13):4419-26.
PMID: 19429554
PMC: 2704846.
DOI: 10.1128/AEM.01523-08.
Coping with our cold planet.
Rodrigues D, Tiedje J
Appl Environ Microbiol. 2008; 74(6):1677-86.
PMID: 18203855
PMC: 2268296.
DOI: 10.1128/AEM.02000-07.
Low-temperature-induced changes in composition and fluidity of lipopolysaccharides in the antarctic psychrotrophic bacterium Pseudomonas syringae.
Kumar G, Jagannadham M, Ray M
J Bacteriol. 2002; 184(23):6746-9.
PMID: 12426366
PMC: 135421.
DOI: 10.1128/JB.184.23.6746-6749.2002.
Phosphorylation of lipopolysaccharides in the Antarctic psychrotroph Pseudomonas syringae: a possible role in temperature adaptation.
Ray M, Kumar G, Shivaji S
J Bacteriol. 1994; 176(14):4243-9.
PMID: 8021210
PMC: 205635.
DOI: 10.1128/jb.176.14.4243-4249.1994.