» Articles » PMID: 17394574

Action Potential Clamp Fingerprints of K+ Currents in Canine Cardiomyocytes: Their Role in Ventricular Repolarization

Overview
Specialty Physiology
Date 2007 Mar 31
PMID 17394574
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

Aim: The aim of the present study was to give a parametric description of the most important K(+) currents flowing during canine ventricular action potential.

Methods: Inward rectifier K(+) current (I(K1)), rapid delayed rectifier K(+) current (I(Kr)), and transient outward K(+) current (I(to)) were dissected under action potential clamp conditions using BaCl(2), E-4031, and 4-aminopyridine, respectively.

Results: The maximum amplitude of I(to) was 3.0 +/- 0.23 pA/pF and its integral was 29.7 +/- 2.5 fC/pF. The current peaked 4.4 +/- 0.7 ms after the action potential upstroke and rapidly decayed to zero with a time constant of 7.4 +/- 0.6 ms. I(Kr) gradually increased during the plateau, peaked 7 ms before the time of maximum rate of repolarization (V(max)(-)) at -54.2 +/- 1.7 mV, had peak amplitude of 0.62 +/- 0.08 pA/pF, and integral of 57.6 +/- 6.7 fC/pF. I(K1) began to rise from -22.4 +/- 0.8 mV, peaked 1 ms after the time of V(max)(-) at -58.3 +/- 0.6 mV, had peak amplitude of 1.8 +/- 0.1 pA/pF, and integral of 61.6 +/- 6.2 fC/pF. Good correlation was observed between peak I(K1) and V(max)(-) (r = 0.93) but none between I(Kr) and V(max)(-). Neither I(K1) nor I(Kr) was frequency-dependent between 0.2 and 1.66 Hz. Congruently, I(Kr) failed to accumulate in canine myocytes at fast driving rates.

Conclusion: Terminal repolarization is dominated by I(K1), but action potential duration is influenced by several ion currents simultaneously. As I(to) was not active during the plateau, and neither I(K1) nor I(Kr) was frequency-dependent, other currents must be responsible for the frequency dependence of action potential duration at normal and slow heart rates in canine ventricular cells.

Citing Articles

Beta-Adrenergic Activation of the Inward Rectifier K Current Is Mediated by the CaMKII Pathway in Canine Ventricular Cardiomyocytes.

Kovacs Z, Horvath B, Dienes C, Ovari J, Kiss D, Hezso T Int J Mol Sci. 2024; 25(21).

PMID: 39519160 PMC: 11546480. DOI: 10.3390/ijms252111609.


Relationship between ion currents and membrane capacitance in canine ventricular myocytes.

Horvath B, Kovacs Z, Dienes C, Barta Z, Ovari J, Szentandrassy N Sci Rep. 2024; 14(1):11241.

PMID: 38755246 PMC: 11099174. DOI: 10.1038/s41598-024-61736-6.


Injection of I through dynamic clamp can make all the difference in patch-clamp studies on hiPSC-derived cardiomyocytes.

Verkerk A, Wilders R Front Physiol. 2023; 14:1326160.

PMID: 38152247 PMC: 10751953. DOI: 10.3389/fphys.2023.1326160.


INNOVATIVE TECHNIQUES AND NEW INSIGHTS: Studying cardiac ionic currents and action potentials in physiologically relevant conditions.

Chen-Izu Y, Hegyi B, Jian Z, Horvath B, Shaw J, Banyasz T Physiol Mini Rev. 2023; 16(3):22-34.

PMID: 38107545 PMC: 10722976.


Selective Inhibition of Cardiac Late Na Current Is Based on Fast Offset Kinetics of the Inhibitor.

Naveed M, Mohammed A, Topal L, Kovacs Z, Dienes C, Ovari J Biomedicines. 2023; 11(9).

PMID: 37760824 PMC: 10525890. DOI: 10.3390/biomedicines11092383.