» Articles » PMID: 17349664

Molybdenum Cofactor-dependent Resistance to N-hydroxylated Base Analogs in Escherichia Coli is Independent of MobA Function

Overview
Journal Mutat Res
Publisher Elsevier
Specialty Genetics
Date 2007 Mar 14
PMID 17349664
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

Lack of molybdenum cofactor (MoCo) in Escherichia coli and related microorganisms was found to cause hypersensitivity to certain N-hydroxylated base analogs, such as HAP (6-N-hydroxylaminopurine). This observation has lead to a previous proposal that E. coli contains a molybdoenzyme capable of detoxifying such N-hydroxylated analogs. Here, we show that, unexpectedly, deletion of all known or putative molybdoenzymes in E. coli failed to reveal any base-analog sensitivity, suggesting that a novel type of MoCo-dependent activity is involved. Further, we establish that protection against the analogs does not require the common molybdopterin guanine-dinucleotide (MGD) form of the cofactor, but instead the guanosine monophosphate (GMP)-free version of MoCo (MPT) is sufficient.

Citing Articles

MoaE Is Involved in Response to Oxidative Stress in .

Cai J, Zhang M, Chen Z, Zhao Y, Xu H, Tian B Int J Mol Sci. 2023; 24(3).

PMID: 36768763 PMC: 9916421. DOI: 10.3390/ijms24032441.


Comment on "A commensal strain of protects against skin neoplasia" by Nakatsuji .

Kozmin S, Rogozin I, Moore E, Abney M, Schaaper R, Pavlov Y Sci Adv. 2019; 5(9):eaaw3915.

PMID: 31535021 PMC: 6739109. DOI: 10.1126/sciadv.aaw3915.


From the Eukaryotic Molybdenum Cofactor Biosynthesis to the Moonlighting Enzyme mARC.

Tejada-Jimenez M, Chamizo-Ampudia A, Calatrava V, Galvan A, Fernandez E, Llamas A Molecules. 2018; 23(12).

PMID: 30545001 PMC: 6321594. DOI: 10.3390/molecules23123287.


A commensal strain of protects against skin neoplasia.

Nakatsuji T, Chen T, Butcher A, Trzoss L, Nam S, Shirakawa K Sci Adv. 2018; 4(2):eaao4502.

PMID: 29507878 PMC: 5834004. DOI: 10.1126/sciadv.aao4502.


Study of Different Variants of Mo Enzyme crARC and the Interaction with Its Partners crCytb5-R and crCytb5-1.

Chamizo-Ampudia A, Galvan A, Fernandez E, Llamas A Int J Mol Sci. 2017; 18(3).

PMID: 28335548 PMC: 5372681. DOI: 10.3390/ijms18030670.


References
1.
Unden G, Bongaerts J . Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim Biophys Acta. 1997; 1320(3):217-34. DOI: 10.1016/s0005-2728(97)00034-0. View

2.
Noskov V, Staak K, Shcherbakova P, Kozmin S, Negishi K, Ono B . HAM1, the gene controlling 6-N-hydroxylaminopurine sensitivity and mutagenesis in the yeast Saccharomyces cerevisiae. Yeast. 1996; 12(1):17-29. DOI: 10.1002/(SICI)1097-0061(199601)12:1%3C17::AID-YEA875%3E3.0.CO;2-I. View

3.
Blattner F, Plunkett 3rd G, Bloch C, Perna N, Burland V, Riley M . The complete genome sequence of Escherichia coli K-12. Science. 1997; 277(5331):1453-62. DOI: 10.1126/science.277.5331.1453. View

4.
Khromov-Borisov N . Naming the mutagenic nucleic acid base analogs: the Galatea syndrome. Mutat Res. 1997; 379(1):95-103. DOI: 10.1016/s0027-5107(97)00112-7. View

5.
Kozmin S, Schaaper R, Shcherbakova P, KULIKOV V, Noskov V, Guetsova M . Multiple antimutagenesis mechanisms affect mutagenic activity and specificity of the base analog 6-N-hydroxylaminopurine in bacteria and yeast. Mutat Res. 1998; 402(1-2):41-50. DOI: 10.1016/s0027-5107(97)00280-7. View