Paul D, Sarkar U, Ayers P
J Mol Model. 2024; 31(1):23.
PMID: 39688632
DOI: 10.1007/s00894-024-06250-2.
Zhao Y, Zhao D, Liu S, Rong C, Ayers P
J Mol Model. 2024; 30(11):361.
PMID: 39361186
DOI: 10.1007/s00894-024-06162-1.
Zaklika J, Ordon P, Komorowski L
J Mol Model. 2024; 30(10):344.
PMID: 39305376
PMC: 11416423.
DOI: 10.1007/s00894-024-06136-3.
Goger S, Karimpour M, Tkatchenko A
J Chem Theory Comput. 2024; 20(15):6621-6631.
PMID: 39015013
PMC: 11325554.
DOI: 10.1021/acs.jctc.4c00582.
Katiyar S, Hou W, Rodriguez J, Florez Gomez J, Valle-Perez A, Qiu S
Energy Fuels. 2024; 38(12):11233-11239.
PMID: 38919652
PMC: 11194820.
DOI: 10.1021/acs.energyfuels.4c00817.
Study on Regio- and Diastereoselectivity of the 1,3-Dipolar Cycloaddition Reaction of Azomethine Ylide with 2-(Benzo[]thiazol-2-yl)-3-(aryl)acrylonitrile: Synthesis, Spectroscopic, and Computational Approach.
Hussein E, Moussa Z, Al-Fahemi J, Al-Rooqi M, Obaid R, Malik M
ACS Omega. 2024; 9(22):23802-23821.
PMID: 38854577
PMC: 11154954.
DOI: 10.1021/acsomega.4c01552.
Synergy of machine learning and density functional theory calculations for predicting experimental Lewis base affinity and Lewis polybase binding atoms.
Huynh H, Le K, Vu L, Nguyen T, Holcomb M, Forli S
J Comput Chem. 2024; 45(18):1552-1561.
PMID: 38500409
PMC: 11099847.
DOI: 10.1002/jcc.27329.
Nitrogen and Sulfur co-doped Carbon dots as an "on-off-on" Fluorescent Sensor for the Detection of Hg and Ampicillin.
Ma L, Ma C, Chen G, Gu J, Yang T, Li L
J Fluoresc. 2024; .
PMID: 38457076
DOI: 10.1007/s10895-024-03656-2.
Investigating sensitization activity of azobenzene disperse dyes via the Direct Peptide Reactivity Assay (DPRA).
Overdahl K, Tighe R, Stapleton H, Ferguson P
Food Chem Toxicol. 2023; 182:114108.
PMID: 37890762
PMC: 10872524.
DOI: 10.1016/j.fct.2023.114108.
Excited-State Polarizabilities: A Combined Density Functional Theory and Information-Theoretic Approach Study.
Zhao D, He X, Ayers P, Liu S
Molecules. 2023; 28(6).
PMID: 36985548
PMC: 10058485.
DOI: 10.3390/molecules28062576.
Electronegativity Equilibration.
Sessa F, Rahm M
J Phys Chem A. 2022; 126(32):5472-5482.
PMID: 35939052
PMC: 9393861.
DOI: 10.1021/acs.jpca.2c03814.
Molecular interactions from the density functional theory for chemical reactivity: Interaction chemical potential, hardness, and reactivity principles.
Alain Miranda-Quintana R, Heidar-Zadeh F, Fias S, Chapman A, Liu S, Morell C
Front Chem. 2022; 10:929464.
PMID: 35936089
PMC: 9352952.
DOI: 10.3389/fchem.2022.929464.
Molecular Interactions From the Density Functional Theory for Chemical Reactivity: The Interaction Energy Between Two-Reagents.
Alain Miranda-Quintana R, Heidar-Zadeh F, Fias S, Chapman A, Liu S, Morell C
Front Chem. 2022; 10:906674.
PMID: 35769444
PMC: 9234655.
DOI: 10.3389/fchem.2022.906674.
On the Prediction of Lattice Energy with the Fukui Potential: Some Supports on Hardness Maximization in Inorganic Solids.
Kaya S, Robles-Navarro A, Mejia E, Gomez T, Cardenas C
J Phys Chem A. 2022; 126(27):4507-4516.
PMID: 35766899
PMC: 9289887.
DOI: 10.1021/acs.jpca.1c09898.
Competition between N and O: use of diazine -oxides as a test case for the Marcus theory rationale for ambident reactivity.
Sheehy K, Bateman L, Flosbach N, Breugst M, Byrne P
Chem Sci. 2021; 11(35):9630-9647.
PMID: 34094230
PMC: 8162281.
DOI: 10.1039/d0sc02834g.
Conceptual density functional theory based electronic structure principles.
Chakraborty D, Chattaraj P
Chem Sci. 2021; 12(18):6264-6279.
PMID: 34084424
PMC: 8115084.
DOI: 10.1039/d0sc07017c.
Adsorption of adipic acid in Al/B-N/P nanocages: DFT investigations.
Al-Otaibi J, Sheena Mary Y, Mary Y, Serdaroglu G
J Mol Model. 2021; 27(4):113.
PMID: 33765215
DOI: 10.1007/s00894-021-04742-z.
Unifying Conceptual Density Functional and Valence Bond Theory: The Hardness-Softness Conundrum Associated with Protonation Reactions and Uncovering Complementary Reactivity Modes.
Stuyver T, Shaik S
J Am Chem Soc. 2020; 142(47):20002-20013.
PMID: 33180491
PMC: 7735708.
DOI: 10.1021/jacs.0c09041.
Excited State Dynamics of Isolated 6- and 8-Hydroxyquinoline Molecules.
Mestdagh J, Poisson L
Chemphyschem. 2020; 21(22):2605-2613.
PMID: 33022865
DOI: 10.1002/cphc.202000626.
Theoretical Insights into Specific Ion Effects and Strong-Weak Acid-Base Rules for Ions in Solution: Deriving the Law of Matching Solvent Affinities from First Principles.
Alain Miranda-Quintana R, Smiatek J
Chemphyschem. 2020; 21(23):2605-2617.
PMID: 32975891
PMC: 7756232.
DOI: 10.1002/cphc.202000644.