» Articles » PMID: 17318191

Bcr-Abl Stabilizes Beta-catenin in Chronic Myeloid Leukemia Through Its Tyrosine Phosphorylation

Overview
Journal EMBO J
Date 2007 Feb 24
PMID 17318191
Citations 106
Authors
Affiliations
Soon will be listed here.
Abstract

Self-renewal of Bcr-Abl(+) chronic myeloid leukemia (CML) cells is sustained by a nuclear activated serine/threonine-(S/T) unphosphorylated beta-catenin. Although beta-catenin can be tyrosine (Y)-phosphorylated, the occurrence and biological relevance of this covalent modification in Bcr-Abl-associated leukemogenesis is unknown. Here we show that Bcr-Abl levels control the degree of beta-catenin protein stabilization by affecting its Y/S/T-phospho content in CML cells. Bcr-Abl physically interacts with beta-catenin, and its oncogenic tyrosine kinase activity is required to phosphorylate beta-catenin at Y86 and Y654 residues. This Y-phospho beta-catenin binds to the TCF4 transcription factor, thus representing a transcriptionally active pool. Imatinib, a Bcr-Abl antagonist, impairs the beta-catenin/TCF-related transcription causing a rapid cytosolic retention of Y-unphosphorylated beta-catenin, which presents an increased binding affinity for the Axin/GSK3beta complex. Although Bcr-Abl does not affect GSK3beta autophosphorylation, it prevents, through its effect on beta-catenin Y phosphorylation, Axin/GSK3beta binding to beta-catenin and its subsequent S/T phosphorylation. Silencing of beta-catenin by small interfering RNA inhibited proliferation and clonogenicity of Bcr-Abl(+) CML cells, in synergism with Imatinib. These findings indicate the Bcr-Abl triggered Y phosphorylation of beta-catenin as a new mechanism responsible for its protein stabilization and nuclear signalling activation in CML.

Citing Articles

Actin Cytoskeleton Remodeling Accompanied by Redistribution of Adhesion Proteins Drives Migration of Cells in Different EMT States.

Ilnitskaya A, Litovka N, Rubtsova S, Zhitnyak I, Gloushankova N Cells. 2024; 13(9.

PMID: 38727316 PMC: 11083118. DOI: 10.3390/cells13090780.


A conserved ZFX/WNT3 axis modulates the growth and imatinib response of chronic myeloid leukemia stem/progenitor cells.

Zhang X, Wang Y, Lu J, Xiao L, Chen H, Li Q Cell Mol Biol Lett. 2023; 28(1):83.

PMID: 37864206 PMC: 10589942. DOI: 10.1186/s11658-023-00496-z.


Visinin-like 1, a novel target gene of the Wnt/β-catenin signaling pathway, is involved in apoptosis resistance in colorectal cancer.

Tage H, Yamaguchi K, Nakagawa S, Kasuga S, Takane K, Furukawa Y Cancer Med. 2023; 12(12):13426-13437.

PMID: 37096864 PMC: 10315817. DOI: 10.1002/cam4.5970.


A streamlined tandem tip-based workflow for sensitive nanoscale phosphoproteomics.

Tsai C, Wang Y, Hsu C, Kitata R, Chu R, Velickovic M Commun Biol. 2023; 6(1):70.

PMID: 36653408 PMC: 9849344. DOI: 10.1038/s42003-022-04400-x.


PTMint database of experimentally verified PTM regulation on protein-protein interaction.

Hong X, Li N, Lv J, Zhang Y, Li J, Zhang J Bioinformatics. 2022; 39(1).

PMID: 36548389 PMC: 9848059. DOI: 10.1093/bioinformatics/btac823.


References
1.
Tipping A, Baluch S, Barnes D, Veach D, Clarkson B, Bornmann W . Efficacy of dual-specific Bcr-Abl and Src-family kinase inhibitors in cells sensitive and resistant to imatinib mesylate. Leukemia. 2004; 18(8):1352-6. DOI: 10.1038/sj.leu.2403416. View

2.
Perrotti D, Cesi V, Trotta R, Guerzoni C, Santilli G, Campbell K . BCR-ABL suppresses C/EBPalpha expression through inhibitory action of hnRNP E2. Nat Genet. 2001; 30(1):48-58. DOI: 10.1038/ng791. View

3.
Reya T, Clevers H . Wnt signalling in stem cells and cancer. Nature. 2005; 434(7035):843-50. DOI: 10.1038/nature03319. View

4.
Zeng X, Tamai K, Doble B, Li S, Huang H, Habas R . A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature. 2005; 438(7069):873-7. PMC: 2100418. DOI: 10.1038/nature04185. View

5.
Kikuchi A . Tumor formation by genetic mutations in the components of the Wnt signaling pathway. Cancer Sci. 2003; 94(3):225-9. PMC: 11160305. DOI: 10.1111/j.1349-7006.2003.tb01424.x. View