» Articles » PMID: 17294292

In Vitro Assessment of Adsorbents Aiming to Prevent Deoxynivalenol and Zearalenone Mycotoxicoses

Overview
Journal Mycopathologia
Date 2007 Feb 13
PMID 17294292
Citations 39
Authors
Affiliations
Soon will be listed here.
Abstract

The high prevalence of the Fusarium mycotoxins, deoxynivalenol (DON) and zearalenone (ZON) in animal feeds in mild climatic zones of Europe and North America results in considerable economic losses, as these toxins affect health and productivity particularly of pigs from all age groups. The use of mycotoxin adsorbents as feed additives is one of the most prominent approaches to reduce the risk for mycotoxicoses in farm animals, and to minimise carry-over of mycotoxins from contaminated feeds into foods of animal origin. Successful aflatoxin adsorption by means of different substances (phyllosilicate minerals, zeolites, activated charcoal, synthetic resins or yeast cell-wall-derived products) has been demonstrated in vivo and in vitro. However, attempts to adsorb DON and ZON have been less encouraging. Here we describe the adsorption capacity of a variety of potential binders, including compounds that have not been evaluated before, such as humic acids. All compounds were tested at realistic inclusion levels for their capacity to bind ZON and DON, using an in vitro method that resembles the different pH conditions in the gastro-intestinal tract of pigs. Mycotoxin adsorption was assessed by chemical methods and distinct bioassays, using specific markers of toxicity as endpoints of toxicity in cytological assays. Whereas none of the tested substances was able to bind DON in an appreciable percentage, some of the selected smectite clays, humic substances and yeast-wall derived products efficiently adsorbed ZON (>70%). Binding efficiency was indirectly confirmed by the reduction of toxicity in the in vitro bioassays. In conclusion, the presented test protocol allows the rapid screening of potential mycotoxin binders. Like other in vitro assays, the presented protocol combining chemical and biological assays cannot completely simulate the conditions of the gastro-intestinal tract, and hence in vivo experiments remain mandatory to assess the efficacy of mycotoxin binders under practical conditions.

Citing Articles

Aflatoxin B1: Challenges and Strategies for the Intestinal Microbiota and Intestinal Health of Monogastric Animals.

Choi H, Garavito-Duarte Y, Gormley A, Kim S Toxins (Basel). 2025; 17(1).

PMID: 39852996 PMC: 11768593. DOI: 10.3390/toxins17010043.


An Algoclay-Based Decontaminant Decreases Exposure to Aflatoxin B, Ochratoxin A, and Deoxynivalenol in a Toxicokinetic Model, as well as Supports Intestinal Morphology, and Decreases Liver Oxidative Stress in Broiler Chickens Fed a Diet Naturally....

Gallissot M, Rodriguez M, Devreese M, Van Herteryck I, Molist F, Santos R Toxins (Basel). 2024; 16(5).

PMID: 38787059 PMC: 11125753. DOI: 10.3390/toxins16050207.


Emerging mycotoxin occurrence in chicken feed and eggs from Algeria.

Laouni C, Lara F, Messai A, Redouane-Salah S, Hernandez-Mesa M, Gamiz-Gracia L Mycotoxin Res. 2024; 40(3):447-456.

PMID: 38753281 PMC: 11258080. DOI: 10.1007/s12550-024-00537-2.


Effects of a Curcumin/Silymarin/Yeast-Based Mycotoxin Detoxifier on Redox Status and Growth Performance of Weaned Piglets under Field Conditions.

Papatsiros V, Papakonstantinou G, Voulgarakis N, Eliopoulos C, Marouda C, Meletis E Toxins (Basel). 2024; 16(4).

PMID: 38668593 PMC: 11054618. DOI: 10.3390/toxins16040168.


Effects of Mycotoxin-Sequestering Agents on Growth Performance and Nutrient Utilization of Growing Pigs Fed Deoxynivalenol-Contaminated Diets.

Kwon W, Shin S, Song Y, Kong C, Kim B Life (Basel). 2023; 13(10).

PMID: 37895335 PMC: 10607961. DOI: 10.3390/life13101953.


References
1.
Galvano F, Piva A, Ritieni A, GALVANO G . Dietary strategies to counteract the effects of mycotoxins: a review. J Food Prot. 2001; 64(1):120-31. DOI: 10.4315/0362-028x-64.1.120. View

2.
KeCecI T, Oguz H, Kurtoglu V, Demet O . Effects of polyvinylpolypyrrolidone, synthetic zeolite and bentonite on serum biochemical and haematological characters of broiler chickens during aflatoxicosis. Br Poult Sci. 1998; 39(3):452-8. DOI: 10.1080/00071669889051. View

3.
GRANT , PHILLIPS . Isothermal Adsorption of Aflatoxin B(1) on HSCAS Clay. J Agric Food Chem. 2001; 46(2):599-605. DOI: 10.1021/jf970604v. View

4.
Rosa C, Miazzo R, Magnoli C, Salvano M, Chiacchiera S, Ferrero S . Evaluation of the efficacy of bentonite from the south of Argentina to ameliorate the toxic effects of aflatoxin in broilers. Poult Sci. 2001; 80(2):139-44. DOI: 10.1093/ps/80.2.139. View

5.
Avantaggiato G, Havenaar R, Visconti A . Evaluation of the intestinal absorption of deoxynivalenol and nivalenol by an in vitro gastrointestinal model, and the binding efficacy of activated carbon and other adsorbent materials. Food Chem Toxicol. 2004; 42(5):817-24. DOI: 10.1016/j.fct.2004.01.004. View