Ali M, Polgari D, Sepsi A, Kontra L, Dalmadi A, Havelda Z
Plant Methods. 2024; 20(1):37.
PMID: 38444026
PMC: 10913579.
DOI: 10.1186/s13007-024-01162-x.
Barker R, Idler K, Thompson D, Kemp J
Plant Mol Biol. 2013; 2(6):335-50.
PMID: 24318453
DOI: 10.1007/BF01578595.
Appels R, Gustafson J, May C
Theor Appl Genet. 2013; 63(3):235-44.
PMID: 24270822
DOI: 10.1007/BF00304002.
Goldberg R, Bemis W, Siegel A
Genetics. 1972; 72(2):253-66.
PMID: 17248582
PMC: 1212825.
DOI: 10.1093/genetics/72.2.253.
Bendich A, McCarthy B
Genetics. 1970; 65(4):567-73.
PMID: 17248503
PMC: 1212466.
DOI: 10.1093/genetics/65.4.567.
Aggregate formation from short fragments of plant DNA.
Thompson W
Plant Physiol. 1976; 57(4):617-22.
PMID: 16659538
PMC: 542084.
DOI: 10.1104/pp.57.4.617.
The Relationship between Satellite Deoxyribonucleic Acid, Ribosomal Ribonucleic Acid Gene Redundancy, and Genome Size in Plants.
Ingle J, Timmis J, Sinclair J
Plant Physiol. 1975; 55(3):496-501.
PMID: 16659109
PMC: 541645.
DOI: 10.1104/pp.55.3.496.
Isolation and Properties of Deoxyribonucleic Acid from Protoplasts of Cell Suspension Cultures of Ammi visnaga and Carrot (Daucus carota).
Ohyama K, Gamborg O, Miller R
Plant Physiol. 1972; 50(3):319-21.
PMID: 16658166
PMC: 366134.
DOI: 10.1104/pp.50.3.319.
Updating of transposable element annotations from large wheat genomic sequences reveals diverse activities and gene associations.
Sabot F, Guyot R, Wicker T, Chantret N, Laubin B, Chalhoub B
Mol Genet Genomics. 2005; 274(2):119-30.
PMID: 16034625
DOI: 10.1007/s00438-005-0012-9.
Comparative analysis of the nucleosomal structure of rye, wheat and their relatives.
Vershinin A, Heslop-Harrison J
Plant Mol Biol. 1998; 36(1):149-61.
PMID: 9484470
DOI: 10.1023/a:1005912822671.
The distribution of genes in the genomes of Gramineae.
Barakat A, Carels N, Bernardi G
Proc Natl Acad Sci U S A. 1997; 94(13):6857-61.
PMID: 9192656
PMC: 21249.
DOI: 10.1073/pnas.94.13.6857.
The large-scale genomic organization of repetitive DNA families at the telomeres of rye chromosomes.
Vershinin A, Schwarzacher T, Heslop-Harrison J
Plant Cell. 1995; 7(11):1823-33.
PMID: 8535136
PMC: 161041.
DOI: 10.1105/tpc.7.11.1823.
Evolutionary sequence divergence within repeated DNA families of higher plant genomes. I. Analysis of reassociation kinetics.
Preisler R, Thompson W
J Mol Evol. 1981; 17(2):78-84.
PMID: 7253038
DOI: 10.1007/BF01732677.
Additional evidence implicating Triticum searsii as the B-genome donor to wheat.
Nath J, Hanzel J, Thompson J, McNay J
Biochem Genet. 1984; 22(1-2):37-50.
PMID: 6712588
DOI: 10.1007/BF00499285.
Implication of Triticum searsii as the B-genome donor to wheat using DNA hybridizations.
Nath J, McNay J, Paroda C, Gulati S
Biochem Genet. 1983; 21(7-8):745-60.
PMID: 6626143
DOI: 10.1007/BF00498921.
Novel properties of satellite DNA from muskmelon.
Bendich A, Anderson R
Proc Natl Acad Sci U S A. 1974; 71(4):1511-5.
PMID: 4524654
PMC: 388260.
DOI: 10.1073/pnas.71.4.1511.
The relatedness and evolution of repeated nucleotide sequences in the genomes of some Gramineae species.
Smith D, Flavell R
Biochem Genet. 1974; 12(3):243-56.
PMID: 4447609
DOI: 10.1007/BF00486093.
Identification of the G-genome donor to Triticum timopheevii by DNA:DNA hybridizations.
Nath J, Thompson J, Gulati S
Biochem Genet. 1985; 23(1-2):125-37.
PMID: 3994655
DOI: 10.1007/BF00499118.
Elucidation of the B-genome donor to Triticum turgidum by unique- and repeated-sequence DNA hybridizations.
Thompson J, Nath J
Biochem Genet. 1986; 24(1-2):39-50.
PMID: 3964230
DOI: 10.1007/BF00502977.
Conservation of repeated DNA base sequences in Crustacea: a molecular approach to decapod phylogeny.
Vaughn J, Traeger F
J Mol Evol. 1976; 7(2):111-31.
PMID: 1263265
DOI: 10.1007/BF01732470.