» Articles » PMID: 17215842

Habitat Modification Alters the Structure of Tropical Host-parasitoid Food Webs

Overview
Journal Nature
Specialty Science
Date 2007 Jan 12
PMID 17215842
Citations 179
Authors
Affiliations
Soon will be listed here.
Abstract

Global conversion of natural habitats to agriculture has led to marked changes in species diversity and composition. However, it is less clear how habitat modification affects interactions among species. Networks of feeding interactions (food webs) describe the underlying structure of ecological communities, and might be crucially linked to their stability and function. Here, we analyse 48 quantitative food webs for cavity-nesting bees, wasps and their parasitoids across five tropical habitat types. We found marked changes in food-web structure across the modification gradient, despite little variation in species richness. The evenness of interaction frequencies declined with habitat modification, with most energy flowing along one or a few pathways in intensively managed agricultural habitats. In modified habitats there was a higher ratio of parasitoid to host species and increased parasitism rates, with implications for the important ecosystem services, such as pollination and biological control, that are performed by host bees and wasps. The most abundant parasitoid species was more specialized in modified habitats, with reduced attack rates on alternative hosts. Conventional community descriptors failed to discriminate adequately among habitats, indicating that perturbation of the structure and function of ecological communities might be overlooked in studies that do not document and quantify species interactions. Altered interaction structure therefore represents an insidious and functionally important hidden effect of habitat modification by humans.

Citing Articles

Multidimensionality of tree communities structure host-parasitoid networks and their phylogenetic composition.

Wang M, Guo S, Guo P, Yang J, Chen G, Chesters D Elife. 2025; 13.

PMID: 39996600 PMC: 11856933. DOI: 10.7554/eLife.100202.


The alien A invasive does not infiltrate the native soil rhizobial symbiosis networks.

Rejili M, Bouznif B, Adam N Commun Integr Biol. 2025; 18(1):2443644.

PMID: 39764484 PMC: 11702932. DOI: 10.1080/19420889.2024.2443644.


Biodiversity measures of a grassland plant-pollinator community are resilient to the introduction of honey bees (Apis mellifera).

Worthy S, Acorn J, Frost C PLoS One. 2024; 19(10):e0309939.

PMID: 39453908 PMC: 11508496. DOI: 10.1371/journal.pone.0309939.


Detecting the functional interaction structure of software development teams.

Zingg C, von Gernler A, Arzig C, Schweitzer F, Gote C PLoS One. 2024; 19(10):e0306923.

PMID: 39446828 PMC: 11500942. DOI: 10.1371/journal.pone.0306923.


Plant diversity increases diversity and network complexity rather than alters community assembly processes of leaf-associated fungi in a subtropical forest.

Li J, Li X, Gan H, Zhang Y, Guo Z, Liu Y Sci China Life Sci. 2024; 68(3):846-858.

PMID: 39432205 DOI: 10.1007/s11427-024-2630-6.