» Articles » PMID: 17199045

Noncanonical Wnt Signaling Through G Protein-linked PKCdelta Activation Promotes Bone Formation

Overview
Journal Dev Cell
Publisher Cell Press
Date 2007 Jan 3
PMID 17199045
Citations 153
Authors
Affiliations
Soon will be listed here.
Abstract

Wnt signaling regulates a variety of developmental processes in animals. Although the beta-catenin-dependent (canonical) pathway is known to control cell fate, a similar role for noncanonical Wnt signaling has not been established in mammals. Moreover, the intracellular cascades for noncanonical Wnt signaling remain to be elucidated. Here, we delineate a pathway in which Wnt3a signals through the Galpha(q/11) subunits of G proteins to activate phosphatidylinositol signaling and PKCdelta in the murine ST2 cells. Galpha(q/11)-PKCdelta signaling is required for Wnt3a-induced osteoblastogenesis in these cells, and PKCdelta homozygous mutant mice exhibit a deficit in embryonic bone formation. Furthermore, Wnt7b, expressed by osteogenic cells in vivo, induces osteoblast differentiation in vitro via the PKCdelta-mediated pathway; ablation of Wnt7b in skeletal progenitors results in less bone in the mouse embryo. Together, these results reveal a Wnt-dependent osteogenic mechanism, and they provide a potential target pathway for designing therapeutics to promote bone formation.

Citing Articles

Signaling Pathways Driving MSC Osteogenesis: Mechanisms, Regulation, and Translational Applications.

Wang L, Ruan M, Bu Q, Zhao C Int J Mol Sci. 2025; 26(3).

PMID: 39941080 PMC: 11818554. DOI: 10.3390/ijms26031311.


The Role of Protein Kinase C During the Differentiation of Stem and Precursor Cells into Tissue Cells.

Pieles O, Morsczeck C Biomedicines. 2025; 12(12.

PMID: 39767642 PMC: 11726769. DOI: 10.3390/biomedicines12122735.


Wnt7b overexpression in osteoblasts stimulates bone formation and reduces obesity in mice on a high-fat diet.

Song F, Marmo T, Song C, Liao X, Long F JBMR Plus. 2024; 8(11):ziae122.

PMID: 39434845 PMC: 11491285. DOI: 10.1093/jbmrpl/ziae122.


Metabolic reprogramming in skeletal cell differentiation.

Bertels J, He G, Long F Bone Res. 2024; 12(1):57.

PMID: 39394187 PMC: 11470040. DOI: 10.1038/s41413-024-00374-0.


Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease.

Hu L, Chen W, Qian A, Li Y Bone Res. 2024; 12(1):39.

PMID: 38987555 PMC: 11237130. DOI: 10.1038/s41413-024-00342-8.


References
1.
Niida A, Hiroko T, Kasai M, Furukawa Y, Nakamura Y, Suzuki Y . DKK1, a negative regulator of Wnt signaling, is a target of the beta-catenin/TCF pathway. Oncogene. 2004; 23(52):8520-6. DOI: 10.1038/sj.onc.1207892. View

2.
Hu H, Hilton M, Tu X, Yu K, Ornitz D, Long F . Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development. 2004; 132(1):49-60. DOI: 10.1242/dev.01564. View

3.
Katanaev V, Ponzielli R, Semeriva M, Tomlinson A . Trimeric G protein-dependent frizzled signaling in Drosophila. Cell. 2005; 120(1):111-22. DOI: 10.1016/j.cell.2004.11.014. View

4.
Chamorro M, Schwartz D, Vonica A, Brivanlou A, Cho K, Varmus H . FGF-20 and DKK1 are transcriptional targets of beta-catenin and FGF-20 is implicated in cancer and development. EMBO J. 2004; 24(1):73-84. PMC: 544900. DOI: 10.1038/sj.emboj.7600460. View

5.
Chen A, Ginty D, Fan C . Protein kinase A signalling via CREB controls myogenesis induced by Wnt proteins. Nature. 2004; 433(7023):317-22. DOI: 10.1038/nature03126. View