Dinuclear Iridium(III) Complexes Consisting of Back-to-back Tpy-(ph)n-tpy Bridging Ligands (n = 0, 1, or 2) and Terminal Cyclometallating Tridentate N-C-N Ligands
Overview
Authors
Affiliations
Three dinuclear iridium(III) complexes consisting of a conjugated bis-tpy type bridging ligand and cyclometallating capping tridentate ligands of the 1,3-di-2-pyridylbenzene family have been prepared (tpy, 2,2',6',2' '-terpyridine). The two tpy units of the bridge are connected via their back-positions (4') either directly or with a p-phenylene or p-biphenylene spacer. The synthesis relies on the reaction between the dinuclear [Ir(dpb)Cl2]2 complex (dpb-H =1,3-dipyridyl-4,6-dimethylbenzene) and the corresponding bis-tpy ligand. Electrochemical measurements afford metal-centered oxidation and ligand-centered reduction potentials; from the oxidation steps, no evidence is obtained for a strong coupling between the two iridium(III) subunits of the dinuclear species. For all complexes, ground-state absorption data in the 380 nm to visible region show a trend which is consistent with the presence of charge-transfer (CT) transitions involving different degrees of electronic delocalization at the bridging ligands. (dpb)Ir(tpy-tpy)Ir(dpb)4+ exhibits an appreciable luminescence at room temperature (phi = 3.0 x 10(-3); tau = 3.3 ns), whereas no emission from the other binuclear complexes is detected. All binuclear complexes luminesce at 77 K, and a metal-to-ligand CT nature for (dpb)Ir(tpy-tpy)Ir(dpb)4+ is suggested, whereas a ligand-centered (LC) emission is proposed for (dpb)Ir(tpy-(ph)2-tpy)Ir(dpb)4+ on the basis of the comparison with the phosphorescence properties of the free bridging ligand, tpy-(ph)2-tpy. Transient absorbance experiments at room temperature afford the absorption spectra and lifetimes of the non-emissive excited states. For (dpb)Ir(tpy-ph-tpy)Ir(dpb)4+ and (dpb)Ir(tpy-(ph)2-tpy)Ir(dpb)4+, the spectra exhibit a broad profile peaking around 780 nm, quite intense in the case of (dpb)Ir(tpy-(ph)2-tpy)Ir(dpb)4+, and lifetimes of 160 and 440 ps, respectively.
Sesolis H, Gontard G, Rager M, Bandini E, Moncada A, Barbieri A Molecules. 2022; 27(18).
PMID: 36144738 PMC: 9503406. DOI: 10.3390/molecules27186003.
Adeloye A Materials (Basel). 2019; 12(17).
PMID: 31454975 PMC: 6747829. DOI: 10.3390/ma12172734.
Photophysical and Photobiological Properties of Dinuclear Iridium(III) Bis-tridentate Complexes.
Liu B, Monro S, Lystrom L, Cameron C, Colon K, Yin H Inorg Chem. 2018; 57(16):9859-9872.
PMID: 30091916 PMC: 6337720. DOI: 10.1021/acs.inorgchem.8b00789.