Sakuyama M, Kominami Y, Ushio H
Proteomes. 2024; 12(4).
PMID: 39728915
PMC: 11679362.
DOI: 10.3390/proteomes12040036.
Qi L, Bennett E, Isalan M
Methods Mol Biol. 2024; 2774:1-13.
PMID: 38441754
DOI: 10.1007/978-1-0716-3718-0_1.
Claushuis B, Cordfunke R, de Ru A, Otte A, van Leeuwen H, Klychnikov O
Anal Chem. 2023; 95(31):11621-11631.
PMID: 37495545
PMC: 10413326.
DOI: 10.1021/acs.analchem.3c01215.
Vieira G, Somera Dos Santos F, Lepique A, da Fonseca C, Innocentini L, Braz-Silva P
Cancers (Basel). 2022; 14(13).
PMID: 35804810
PMC: 9264903.
DOI: 10.3390/cancers14133038.
Kominami Y, Hayashi T, Tokihiro T, Ushio H
Food Chem (Oxf). 2022; 3:100051.
PMID: 35415663
PMC: 8991525.
DOI: 10.1016/j.fochms.2021.100051.
Making the cut with protease engineering.
Dyer R, Weiss G
Cell Chem Biol. 2021; 29(2):177-190.
PMID: 34921772
PMC: 9127713.
DOI: 10.1016/j.chembiol.2021.12.001.
Quantitative profiling of protease specificity.
Ratnikov B, Cieplak P, Remacle A, Nguyen E, Smith J
PLoS Comput Biol. 2021; 17(2):e1008101.
PMID: 33617527
PMC: 7932537.
DOI: 10.1371/journal.pcbi.1008101.
Predictive models of protease specificity based on quantitative protease-activity profiling data.
Fedonin G, Eroshkin A, Cieplak P, Matveev E, Ponomarev G, Gelfand M
Biochim Biophys Acta Proteins Proteom. 2019; 1867(11):140253.
PMID: 31330204
PMC: 6745255.
DOI: 10.1016/j.bbapap.2019.07.006.
Twenty years of bioinformatics research for protease-specific substrate and cleavage site prediction: a comprehensive revisit and benchmarking of existing methods.
Li F, Wang Y, Li C, Marquez-Lago T, Leier A, Rawlings N
Brief Bioinform. 2018; 20(6):2150-2166.
PMID: 30184176
PMC: 6954447.
DOI: 10.1093/bib/bby077.
Global substrate specificity profiling of post-translational modifying enzymes.
Ivry S, Meyer N, Winter M, Bohn M, Knudsen G, ODonoghue A
Protein Sci. 2017; 27(3):584-594.
PMID: 29168252
PMC: 5818756.
DOI: 10.1002/pro.3352.
Synthesis of a HyCoSuL peptide substrate library to dissect protease substrate specificity.
Poreba M, Salvesen G, Drag M
Nat Protoc. 2017; 12(10):2189-2214.
PMID: 28933778
DOI: 10.1038/nprot.2017.091.
Specificity of peptidases secreted by filamentous fungi.
Hamin Neto Y, da Rosa Garzon N, Pedezzi R, Cabral H
Bioengineered. 2017; 9(1):30-37.
PMID: 28857638
PMC: 5972931.
DOI: 10.1080/21655979.2017.1373531.
Two epitopes responsible for the catalytic activity of heme oxygenase-1 identified by phage display.
Wei X, Liu Q, Gao Y, Yang J, Wang B, Yang G
FEBS Open Bio. 2017; 7(5):719-726.
PMID: 28469983
PMC: 5407895.
DOI: 10.1002/2211-5463.12217.
Application of phage peptide display technology for the study of food allergen epitopes.
Chen X, Dreskin S
Mol Nutr Food Res. 2016; 61(6).
PMID: 27995755
PMC: 5525323.
DOI: 10.1002/mnfr.201600568.
Advancement and applications of peptide phage display technology in biomedical science.
Wu C, Liu I, Lu R, Wu H
J Biomed Sci. 2016; 23:8.
PMID: 26786672
PMC: 4717660.
DOI: 10.1186/s12929-016-0223-x.
Characterizing Protease Specificity: How Many Substrates Do We Need?.
Schauperl M, Fuchs J, Waldner B, Huber R, Kramer C, Liedl K
PLoS One. 2015; 10(11):e0142658.
PMID: 26559682
PMC: 4641643.
DOI: 10.1371/journal.pone.0142658.
Molecular and chemical engineering of bacteriophages for potential medical applications.
Hodyra K, Dabrowska K
Arch Immunol Ther Exp (Warsz). 2014; 63(2):117-27.
PMID: 25048831
PMC: 4359349.
DOI: 10.1007/s00005-014-0305-y.
Mixture-based combinatorial libraries from small individual peptide libraries: a case study on α1-antitrypsin deficiency.
Chang Y, Chu Y
Molecules. 2014; 19(5):6330-48.
PMID: 24840902
PMC: 6271437.
DOI: 10.3390/molecules19056330.
Sequence-derived structural features driving proteolytic processing.
Belushkin A, Vinogradov D, Gelfand M, Osterman A, Cieplak P, Kazanov M
Proteomics. 2013; 14(1):42-50.
PMID: 24227478
PMC: 3926948.
DOI: 10.1002/pmic.201300416.
SOMA: a single oligonucleotide mutagenesis and cloning approach.
Pfirrmann T, Lokapally A, Andreasson C, Ljungdahl P, Hollemann T
PLoS One. 2013; 8(6):e64870.
PMID: 23750217
PMC: 3672168.
DOI: 10.1371/journal.pone.0064870.