» Articles » PMID: 17130494

Nutrient Control of Insulin Secretion in Isolated Normal Human Islets

Overview
Journal Diabetes
Specialty Endocrinology
Date 2006 Nov 30
PMID 17130494
Citations 101
Authors
Affiliations
Soon will be listed here.
Abstract

Pancreatic islets were isolated from 16 nondiabetic organ donors and, after culture for approximately 2 days in 5 mmol/l glucose, were perifused to characterize nutrient-induced insulin secretion in human islets. Stepwise increases from 0 to 30 mmol/l glucose (eight 30-min steps) evoked concentration-dependent insulin secretion with a threshold at 3-4 mmol/l glucose, K(m) at 6.5 mmol/l glucose, and V(max) at 15 mmol/l glucose. An increase from 1 to 15 mmol/l glucose induced biphasic insulin secretion with a prominent first phase (peak increase of approximately 18-fold) and a sustained, flat second phase ( approximately 10-fold increase), which were both potentiated by forskolin. The central role of ATP-sensitive K(+) channels in the response to glucose was established by abrogation of insulin secretion by diazoxide and reversible restoration by tolbutamide. Depolarization with tolbutamide or KCl (plus diazoxide) triggered rapid insulin secretion in 1 mmol/l glucose. Subsequent application of 15 mmol/l glucose further increased insulin secretion, showing that the amplifying pathway is operative. In control medium, glutamine alone was ineffective, but its combination with leucine or nonmetabolized 2-amino-bicyclo [2,2,1]-heptane-2-carboxylic acid (BCH) evoked rapid insulin secretion. The effect of BCH was larger in low glucose than in high glucose. In contrast, the insulin secretion response to arginine or a mixture of four amino acids was potentiated by glucose or tolbutamide. Palmitate slightly augmented insulin secretion only at the supraphysiological palmitate-to-albumin ratio of 5. Inosine and membrane-permeant analogs of pyruvate, glutamate, or succinate increased insulin secretion in 3 and 10 mmol/l glucose, whereas lactate and pyruvate had no effect. In conclusion, nutrient-induced insulin secretion in normal human islets is larger than often reported. Its characteristics are globally similar to those of insulin secretion by rodent islets, with both triggering and amplifying pathways. The pattern of the biphasic response to glucose is superimposable on that in mouse islets, but the concentration-response curve is shifted to the left, and various nutrients, in particular amino acids, influence insulin secretion within the physiological range of glucose concentrations.

Citing Articles

Mechanistic insights and approaches for beta cell regeneration.

Karampelias C, Liu K, Tengholm A, Andersson O Nat Chem Biol. 2025; .

PMID: 39881214 DOI: 10.1038/s41589-024-01822-y.


Double transgenic neonatal porcine islets as an alternative source for beta cell replacement therapy.

Mourad N, Perota A, Xhema D, Duchi R, Lagutina I, Galli C Proc Natl Acad Sci U S A. 2024; 121(46):e2409138121.

PMID: 39495930 PMC: 11573657. DOI: 10.1073/pnas.2409138121.


Proteomic predictors of individualized nutrient-specific insulin secretion in health and disease.

Kolic J, Sun W, Cen H, Ewald J, Rogalski J, Sasaki S Cell Metab. 2024; 36(7):1619-1633.e5.

PMID: 38959864 PMC: 11250105. DOI: 10.1016/j.cmet.2024.06.001.


Cell identity dynamics and insight into insulin secretagogues when employing stem cell-derived islets for disease modeling.

Wang C, Abadpour S, Aizenshtadt A, Dalmao-Fernandez A, Hoyem M, Wilhelmsen I Front Bioeng Biotechnol. 2024; 12:1392575.

PMID: 38933536 PMC: 11199790. DOI: 10.3389/fbioe.2024.1392575.


SUCNR1 regulates insulin secretion and glucose elevates the succinate response in people with prediabetes.

Sabadell-Basallote J, Astiarraga B, Castano C, Ejarque M, Repolles-de-Dalmau M, Quesada I J Clin Invest. 2024; 134(12).

PMID: 38713514 PMC: 11178533. DOI: 10.1172/JCI173214.