» Articles » PMID: 17121179

Anti-inflammatory Action of Phenolic Compounds from Gastrodia Elata Root

Overview
Journal Arch Pharm Res
Specialty Pharmacology
Date 2006 Nov 24
PMID 17121179
Citations 34
Authors
Affiliations
Soon will be listed here.
Abstract

Previous screening of the pharmacological action of Gastrodia elata (GE) root (Orchidaceae) showed that methanol (MeOH) extracts have significant anti-inflammatory properties. The anti-inflammatory agents of GE, however, remain unclear. In this experiment, MeOH extracts of GE were fractionated with organic solvents for the anti-inflammatory activity-guided separation of GE. Eight phenolic compounds from the ether (EtOEt) and ethyl acetate (EtOAc) fractions were isolated by column chromatography: 4-hydroxybenzaldehyde (I), 4-hydroxybenzyl alcohol (II), benzyl alcohol (III), bis-(4-hydroxyphenyl) methane (IV), 4(4'-hydroxybenzyloxy)benzyl methylether (V), 4-hydroxy-3-methoxybenzyl alcohol (VI), 4-hydroxy-3-methoxybenzaldehyde (VII), and 4-hydroxy-3-methoxybenzoic acid (VIII). To investigate the anti-inflammatory and anti-oxidant activity of these compounds, their effects on carrageenan-induced paw edema, arachidonic acid (AA)-induced ear edema and analgesic activity in acetic acid (HAc)-induced writhing response were carried out in vivo; cyclooxygenase (COX) activity, reactive oxygen species (ROS) generation in rat basophilic leukemia (RBL 2H3) cells and 1,1-diphenyl-2-picryl-hydroazyl (DPPH) scavenging activity were determined in vitro. These phenolic compounds not only had anti-inflammatory and analgesic properties in vivo, but also inhibited COX activity and silica-induced ROS generation in a dose-dependent manner. Among these phenolic compounds, compound VII was the most potent anti-inflammatory and analgesic. Compound VII significantly inhibited silica-induced ROS generation and compound VI significantly increased DPPH radical scavenging activity. Compounds I, II and III significantly inhibited the activity of COX-I and II. These results indicate that phenolic compounds of GE are anti-inflammatory, which may be related to inhibition of COX activity and to anti-oxidant activity. Consideration of the structure-activity relationship of the phenolic derivatives from GE on the anti-inflammatory action revealed that both C-4 hydroxy and C-3 methoxy radicals of benzyl aldehyde play an important role in anti-inflammatory activities.

Citing Articles

Phytochemical Compounds from and Their Antioxidant and Anti-Inflammatory Activities.

Lopez-Perez A, Lagunez-Rivera L, Solano R, Chavez-Pina A, Barragan-Zarate G, Jimenez-Estrada M Plants (Basel). 2025; 14(4).

PMID: 40006847 PMC: 11859815. DOI: 10.3390/plants14040588.


Phytochemical Characterization and Biological Activity of Two Species from Guinea-Bissau.

Malu Q, Malmir M, Infante Caldeira G, Encarnacao S, Lima K, Catarino L Plants (Basel). 2025; 14(1.

PMID: 39795268 PMC: 11723167. DOI: 10.3390/plants14010008.


Unveiling the phytochemical profile, antioxidant and antibacterial activities, acute toxicity insight and analgesic effect of stems: An unexplored endemic plant from Morocco.

El Baakili A, Fadil M, Guaouguaou F, Missbah El Idrissi M, Taghzouti K, Jeddi M Heliyon. 2024; 10(18):e37429.

PMID: 39309869 PMC: 11415678. DOI: 10.1016/j.heliyon.2024.e37429.


Features of bacterial and fungal communities in the rhizosphere of cultivated in greenhouse for early harvest.

Khanh N, Dutta S, Kim C, Lee Y Front Microbiol. 2024; 15:1389907.

PMID: 38721597 PMC: 11076825. DOI: 10.3389/fmicb.2024.1389907.


Bioactivity Profiling and Quantification of Gastrodin in Cultivated in the Field versus Facility via Hyphenated High-Performance Thin-Layer Chromatography.

Mugge F, Sim C, Honermeier B, Morlock G Int J Mol Sci. 2023; 24(12).

PMID: 37373083 PMC: 10298505. DOI: 10.3390/ijms24129936.